
SANDIA REPORT
SAND2015-9132
Unlimited Release
Printed October 19, 2015

Sierra Structural Dynamics–User’s
Notes
Sierra Structural Dynamics Development Team

Latest Software Release:
4.38-1-Release 2015-10-16

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2015-9132
Unlimited Release

Printed October 19, 2015

Sierra Structural Dynamics–User’s Notes

Sierra/SD Development Team

Abstract

Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis, required for high fidelity, validated models used in modal, vibration, static and
shock analysis of weapons systems. This document provides a users guide to the input for
Sierra/SD. Details of input specifications for the different solution types, output options,
element types and parameters are included. The appendices contain detailed examples, and
instructions for running the software on parallel platforms.

3

Contents

1 Introduction . 3

2 Sections of a Sierra/SD Input File . 6

2.1 SOLUTION . 6

2.1.1 Multicase . 6

2.1.2 A Note On Time Stepping In Multicase Solutions 9

2.1.3 Checkout . 9

2.1.4 CJdamp . 9

2.1.5 Craig-Bampton Reduction . 10

2.1.6 Dynamic Design Analysis Method (DDAM) 13

2.1.7 Directfrf . 16

2.1.8 inverse_source_directfrf . 19

2.1.9 Dump . 24

2.1.10 Eigen . 24

2.1.11 Direct Eigen Solution . 27

2.1.12 AEigen . 27

2.1.13 Blk_eigen . 30

2.1.14 Eigenk . 31

2.1.15 Largest_Ev . 31

2.1.16 Buckling . 31

2.1.17 Modal Participation Factor . 33

2.1.18 Modalfrf . 35

2.1.19 Modalranvib . 39

i

2.1.20 Modalshock . 43

2.1.21 Modaltransient . 44

2.1.22 QModaltransient . 46

2.1.23 QEVP . 47

2.1.24 QModalfrf . 54

2.1.25 NLStatics . 55

2.1.26 NLTransient . 56

2.1.27 Receive_Sierra_Data . 58

2.1.28 Statics . 59

2.1.29 Subdomain_Eigen . 60

2.1.30 Tangent . 60

2.1.31 Transhock . 61

2.1.32 Transient . 62

2.1.33 TSR_Preload . 65

2.1.34 Explicit Solver . 67

2.1.35 Geometric Rigid Body Modes . 69

2.1.36 Waterline of Rigid Body . 71

2.1.37 Gap Removal . 75

2.2 Solution Options . 76

2.2.1 Restart – option . 76

2.2.2 Solver . 80

2.2.3 Lumped – option . 83

2.2.4 Constraintmethod – option . 83

2.2.5 Scattering – option . 83

2.2.6 no_symmetrize_struc_acous – option 84

2.2.7 transfer – option . 84

ii

2.3 PARAMETERS . 85

2.4 FETI . 95

2.4.1 Corner Algorithms . 97

2.4.2 Solves within Solves . 97

2.4.3 Levels of Diagnostic Output . 98

2.5 CLOP . 100

2.6 GDSW . 102

2.7 ECHO . 108

2.7.1 Mass Properties . 108

2.7.2 Mpc . 110

2.7.3 ModalVars . 111

2.7.4 Subdomains . 111

2.8 OUTPUTS . 111

2.8.1 Maa . 112

2.8.2 Kaa . 112

2.8.3 Faa . 113

2.8.4 ElemEigChecks . 113

2.8.5 Elemqualchecks . 113

2.8.6 Displacement . 114

2.8.7 Velocity . 114

2.8.8 Acceleration . 114

2.8.9 Strain . 115

2.8.10 Stress . 115

2.8.11 VonMises . 116

2.8.12 Stress = GP . 116

2.8.13 VRMS . 118

iii

2.8.14 Energy . 118

2.8.15 GEnergies . 118

2.8.16 Mesh_Error . 119

2.8.17 Harwellboeing . 119

2.8.18 Mfile . 119

2.8.19 Force . 119

2.8.20 rhs . 121

2.8.21 EForce . 121

2.8.22 Residuals . 121

2.8.23 Resid_only . 122

2.8.24 TIndex . 122

2.8.25 EOrient . 123

2.8.26 Pressure . 124

2.8.27 NPressure . 124

2.8.28 APressure . 124

2.8.29 APartVel . 124

2.8.30 Slave_Constraint_Info . 125

2.8.31 Statistics . 125

2.8.32 KDiag . 126

2.8.33 ADiag . 127

2.8.34 Warninglevel . 127

2.8.35 Precision . 128

2.8.36 ddamout . 128

2.9 HISTORY . 130

2.10 FREQUENCY . 132

2.11 FILE . 134

iv

2.11.1 geometry_file . 134

2.11.2 sierra_input_file . 135

2.11.3 Additional Comments About Output 136

2.12 Linesample . 136

2.13 BOUNDARY . 137

2.13.1 Prescribed Displacements and Pressures 137

2.13.2 Prescribed Accelerations . 139

2.13.3 Node_List_File . 140

2.13.4 Nonreflecting Boundaries . 141

2.13.5 Impedance Boundary Conditions . 142

2.13.6 Slosh Boundary Conditions . 143

2.13.7 Infinite Elements . 143

2.14 LOADS . 146

2.14.1 Scale Factors for the Load . 147

2.14.2 Sideset Loading . 147

2.14.3 Spatial Variation . 148

2.14.4 Required Section . 150

2.14.5 Follower Stiffness . 150

2.14.6 Acoustic Loads . 151

2.14.7 Thermal Loads . 153

2.14.8 Energy Deposition Input and Loads . 157

2.14.9 Consistent Loads . 157

2.14.10 Pressure_Z . 158

2.14.11 Static Loads . 158

2.14.12 Time Varying Loads . 158

2.14.13 Random Pressure Loads . 159

v

2.14.14 Frequency Dependent Loads . 162

2.14.15 Rotational Frames . 163

2.14.16 Rigid Body Filter for Input . 167

2.15 Load . 168

2.16 INITIAL-CONDITIONS . 168

2.17 RanLoads . 170

2.18 Contact Data . 171

2.19 Tied Surfaces . 172

2.19.1 Mortar Methods . 173

2.19.2 Node to Face . 173

2.20 Contact Normals . 176

2.21 RigidSet . 178

2.22 RrodSet . 179

2.23 Tied-Joint . 180

2.23.1 Input Specification . 180

2.23.2 Output Specifications . 184

2.24 BLOCK . 185

2.24.1 Block Parameters . 186

2.24.2 General Block Parameters . 186

2.25 Macroblock . 191

2.26 MATERIAL . 192

2.26.1 Isotropic Material . 192

2.26.2 Anisotropic Material . 193

2.26.3 Orthotropic Material . 193

2.26.4 Stochastic Material . 194

2.26.5 Linear Viscoelastic Material . 195

vi

2.26.6 Acoustic Material . 198

2.26.7 Temperature-Dependent Material Properties 198

2.26.8 Density . 199

2.26.9 Specific Heat . 199

2.26.10 CJetaFunction . 201

2.27 COORDINATE . 201

2.28 FUNCTION . 203

2.28.1 Linear Functions . 205

2.28.2 Functions using Tables . 206

2.28.3 Polynomial Functions . 207

2.28.4 LogLog Functions . 208

2.28.5 Random Functions . 208

2.28.6 SamplingRandom Functions . 209

2.28.7 RandomLib Functions . 210

2.28.8 SpatialBC Functions . 212

2.28.9 ReadNodal Functions . 213

2.28.10 ReadNodalSet Functions . 214

2.28.11 ReadSurface Functions . 214

2.28.12 User Defined Functions . 215

2.28.13 Plane Wave . 217

2.28.14 Planar Step Wave . 218

2.28.15 Spherically Spreading Wave . 218

2.28.16 Shock Wave . 220

2.28.17 FSI . 222

2.29 MATRIX-FUNCTION . 222

2.29.1 Alternate Table Interface . 224

vii

2.30 Table . 226

2.31 CBModel . 227

2.31.1 Sensitivity Analysis for Craig-Bampton models 231

2.32 ModalFilter . 234

2.33 Integer List . 236

2.34 SENSITIVITY . 236

2.34.1 Attune . 237

2.34.2 Sensitivity Output . 238

2.34.3 Sensitivity Limitations . 240

2.35 Element Level Interface for UQ . 240

2.36 DAMPING . 242

2.36.1 Nonlinear transient solutions with damping 244

2.36.2 Nonlinear Distributed Damping . 244

3 Elements . 247

3.1 Hex8 . 247

3.2 Hex20 . 248

3.3 Wedge6 . 248

3.4 Wedge15 . 248

3.5 Tet4 . 249

3.6 Tet10 . 249

3.7 QuadT . 249

3.8 QuadM . 250

3.9 Quad8T . 252

3.10 Nquad/Ntria . 253

3.11 TriaShell . 254

3.12 Layered Shell . 255

viii

3.13 Tria3 . 258

3.14 Tria6 . 259

3.15 Offset Shells . 259

3.16 HexShell . 260

3.17 Beam2 . 264

3.18 Nbeam . 268

3.19 OBeam . 272

3.20 Truss . 272

3.21 Ftruss . 272

3.22 ConMass . 273

3.23 Spring . 275

3.23.1 Spring Parameter Values . 276

3.24 RSpring . 276

3.25 Spring3 - nonlinear cubic spring . 277

3.26 Dashpot . 278

3.27 SpringDashpot . 279

3.28 Hys . 279

3.29 Shys . 282

3.30 Iwan . 282

3.31 Joint2G . 283

3.31.1 Specification . 283

3.31.2 Constitutive Behavior . 284

3.32 Gap . 290

3.33 Gap2D . 293

3.34 GasDmp . 296

3.35 Nmount . 296

ix

3.36 MPC . 298

3.37 RROD . 299

3.38 RBar . 300

3.39 RBE2 . 301

3.40 RBE3 . 301

3.41 Superelement . 303

3.42 Interface Elements . 309

3.43 Dead . 309

3.44 Offset Elements and Lumped Mass . 310

4 Stress/Strain Recovery . 311

4.1 Stress/Strain Truth Table . 311

4.2 Solid Element Stress/Strain . 311

4.3 Shell Element Stress/Strain . 311

4.4 Line Element Stress/Strain . 313

5 Troubleshooting . 315

5.1 Stand-Alone Tools . 315

5.1.1 Grope . 315

5.1.2 Cubit . 315

5.2 Using Yada to identify disconnected regions . 316

5.3 Using Sierra/SD To Troubleshoot . 316

5.3.1 Modal Analysis . 317

5.3.2 Evaluating Memory Use . 318

5.3.3 Debugging RBMs with the Node_List_File 318

5.3.4 Identifying Problematic Subdomains . 319

5.3.5 Problematic Elements and Connectivity 319

5.4 Troubleshooting FETI Issues . 321

x

5.4.1 Introduction . 321

5.4.2 Standard FETI Block . 321

5.4.3 Memory . 321

5.4.4 Local Rigid Body Modes . 323

5.4.5 Global Rigid Body Modes . 324

6 Acknowledgments . 326

References 327

Appendix

1 Sierra/SD Example Input Files . 331

1.1 An Eigenanalysis Input File . 331

1.2 An Anisotropic Material Input File . 332

1.3 A Multi-material Input File . 334

1.4 A Modaltransient Input File . 338

1.5 A Modalfrf Input File . 340

1.6 A Directfrf Input File . 342

1.7 A Statics Input File . 344

2 Running Sierra/SD on serial UNIX platforms . 345

3 Running Sierra/SD in Parallel . 347

3.1 Number of Processors Needed . 348

3.2 Use “yada” to load balance the model . 348

3.3 Running yada on serial UNIX platforms . 349

3.4 Parallel Machine Work Space . 349

3.5 Using Nem_spread . 350

3.6 Sierra/SD FILE Section . 351

3.7 Running Sierra/SD . 351

xi

3.8 Joining Result Files . 352

4 CF FETI . 353

4.1 Features of CF solver . 353

4.2 Limitations of the Solver . 353

5 GDSW Solver Parameters for Older Version . 357

6 Inverse Methods . 361

Index . 361

xii

List of Figures

1 DDAM Example Input . 17

2 Padé Expansion Input Example . 19

3 Modal Participation Factor (MPF) Example . 35

4 SA_Eigen Example . 52

5 Transhock Example Input . 62

6 Transient/Transfer Example. 65

7 Explicit Time Step Control Example . 69

8 Waterline Example . 72

9 Waterline Coordinate Definition . 73

10 Net Force vs depth for a Rigid Body . 74

11 Notes on Eigen Restart . 80

12 Example MFile Format Results . 94

13 Example KDIAG output. 127

14 Extended Geometry File Specification . 135

15 Example Boundary Section . 138

16 Coordinate Frame Projection for Tractions . 150

17 Depth Dependent Pressure Load Example . 158

18 RandomPressure Loading Approximations . 160

19 Statics LOADS entry for Rotation . 164

20 Example using Tangent Update . 165

21 Example of using qevp for Tangent Update . 166

22 Search Tolerance definition . 174

xiii

23 Normal Definitions on Faceted Geometry . 176

24 Smoothing Parameters for Surface Normals . 176

25 Shell Normal in Contact or Tied Interactions . 177

26 RigidSet/TiedJoint Centernode Connection . 179

27 RrodSet Constraints . 180

28 Tied Joint Surface Normal Definition . 182

29 Tied Joint Geometry . 183

30 Tied Joint Example . 184

31 Example Block input . 187

32 Coordinate System Definition Vectors . 202

33 Linear function #3. "illegal_fun" . 205

34 Linear function #5. "extrap_fun" . 206

35 Example Gaussian output. 209

36 Example RandomLib Function Specification . 211

37 RandomLib Temporal Interpolation . 212

38 Example ReadNodal Function Specification . 213

39 Example ReadNodalSet Function Specification . 214

40 Example ReadSurface Function Specification . 215

41 Example PlaneWave Function Specification . 218

42 Spherical Wave Geometry . 219

43 Spherical Wave Example . 220

44 Example Shock Wave Function Specification . 221

45 Fluid-Structure Interaction (FSI) Infrastructure . 223

46 Example Input for a Matrix-Function using Tables . 225

47 Craig-Bampton Reduction . 232

48 Example ModalFilter Input . 234

xiv

49 Eigen Sensitivity Example Data . 239

50 UQ element interface . 241

51 QuadT Element . 250

52 Quad8T Element . 252

53 Function for nquad_eps_max . 254

54 Shell Rotation Process . 256

55 Stacking arrangement for a multilayer shell element. 257

56 Tria6 Element . 259

57 Example HexShell Input . 262

58 HexShell Autolayer Example . 263

59 Beam Orientation and Local Coordinate System. 266

60 Beam Offset and Local Coordinate System. 267

61 NBeam Orientation, Offset and Local Coordinate System 270

62 Hys element parameters . 281

63 Iwan Constitutive Model . 286

64 Hysteresis Microslip Variation with β . 287

65 Hysteresis Macroslip Variation with β . 288

66 Eplas Model . 289

67 Gap element Force-Deflection Curve . 292

68 Mass bouncing off a Gap . 294

69 Gap2D force diagram . 295

70 Sierra/SD Mount Interface . 297

71 Nmount Orientation . 297

72 Tria3 Stress Recovery . 314

73 Problem Decomposition . 317

74 Single Spring element . 320

xv

75 Truss Decomposition Issues . 320

xvi

List of Tables

1 Comment String Options . 3

2 Sierra/SD Solution Types . 7

3 Multicase Parameters . 8

4 DirectFRF Parameters for Padé Expansion . 18

5 inverse_source_directfrf solution parameters 20

6 ROLmethod options . 23

7 Development AEigen methods . 27

8 AEigen optional parameters. 28

9 AEigen Verbosity Table . 29

10 MPF Parameters . 34

11 MPF Summary data . 35

12 ModalRanVib Output to Exodus File . 42

13 Comparison of Quadratic EigenProblem Methods . 49

14 Parameters for QEVP Anasazi Solutions . 49

15 Ceigen Tests . 51

16 SA_Eigen Parameters . 53

17 Verification Summary for SA_Eigen . 54

18 Projection_Eigen Parameters . 55

19 Receive_Sierra_Data Parameters . 58

20 Explicit Transient Solution Parameters . 68

21 Waterline Parameters . 71

22 Sierra/SD Solution Options . 76

xvii

23 Supported restart capabilities for transient integrators in Sierra/SD. 79

24 Restart File Format and Names . 81

25 Available keywords in the Parameters section . 86

26 Some useful combinations of units. 87

27 Beam Attribute Ordering . 87

28 Eigenvector Normalization Methods . 93

29 FETI Section Options . 96

30 Corner Options . 98

31 Linear Solver Options . 99

32 Prt_Debug Options . 100

33 CLOP Section Options . 101

34 GDSW Section Options (Basic) . 102

35 GDSW Section Options (Advanced) . 103

36 GDSW Section Options (Supplemental Output) . 104

37 GDSW Section Options (Helmholtz) . 107

38 ECHO Section Options . 109

39 Hex20 Gauss Point Locations . 117

40 Data Files Written Using the Mfile Option . 120

41 TIndex parameters . 122

42 Element Orientation Outputs . 123

43 Element Orientation Interpretation . 124

44 Supported Statistical Data types . 126

45 Selected Dynamic Matrix Definitions . 127

46 Warning Diagnostic Options . 128

47 Output Exodus Precision Options . 128

48 OUTPUT Section Options . 129

xviii

49 Variables that are output from ddam analysis . 130

50 Frequency Value Specification Methods . 133

51 Boundary Enforcement Keywords . 139

52 Limitations for Prescribed Boundary Conditions . 141

53 Available parameters for the infinite element section . 144

54 Load Specification Keywords . 149

55 Random Pressure Inputs . 161

56 Rotating Frame Parameters . 163

57 Tied Surface Parameters . 175

58 RigidSet Parameters . 178

59 Tied Joint Parameters . 183

60 Tied Joint, “Normal” and “Side” dependencies . 185

61 General Block Parameters . 187

62 Non-Structural Mass Units . 190

63 Element Attributes . 190

64 Default Parameters for Viscoelastic Materials . 196

65 Material Stiffness Parameters . 200

66 Coordinate Names for history files . 204

67 Random function parameters . 209

68 SamplingRandom function parameters . 210

69 RandomLib function parameters . 211

70 ReadNodal function parameters . 213

71 Predefined RTC variables . 217

72 Planar Step Wave Parameters . 219

73 Spherical Wave Parameters . 219

74 Shock Wave Parameters . 221

xix

75 Free Surface Flag Options . 221

76 TABLE Section Options . 226

77 CBModel Parameters . 228

78 Data output for Craig-Bampton Reduction . 230

79 Modal Filter Keywords . 235

80 Sensitivity Analysis Keywords . 236

81 Sensitivity Analysis Solution Type Availability . 240

82 DAMPING Section Options . 242

83 QuadM attributes . 251

84 TriaShell attributes . 255

85 HexShell Verification Summary . 264

86 Attributes for Beam2 . 268

87 Attributes and Parameters for Nbeam . 271

88 Ftruss Attributes and Parameters . 274

89 SpringDashpot Parameters . 280

90 Older Iwan 4-parameter model . 286

91 Revised Iwan 4-parameter model . 287

92 Rbar Exodus Attributes . 300

93 Element Stress Truth Table . 312

1 Determining Number Of Processors Needed . 348

2 CF FETI Parameter Modifications . 354

3 Solver options and defaults specific to older GDSW solver 358

4 Solver options and defaults specific to older GDSW Solver 359

xx

Sierra Structural Dynamics

Sierra/SD provides a massively parallel implementation of structural dynamics finite
element analysis. This capability is required for high fidelity, validated models used in
modal, vibration, static and shock analysis of weapons systems. General capabilities for
modal, statics and transient dynamics are provided.

This document describes the input for the Sierra/SD program. Examples of input
specifications are scattered throughout the document. Appendix A provides several full
input files. Appendix B provides instructions on invoking Sierra/SD on a serial UNIX
platform.

The name for Sierra/SD is taken from a series of ancient Tewa Indian pueblos to the
east of Albuquerque, New Mexico. These pueblos have been a source of culture and of salt
for centuries. They were among the first settlements for Spanish explorers in the region.

This page intentionally left blank.

UNCLASSIFIED - UNLIMITED RELEASE 3

1 Introduction – Input File

The input file contains all the directives necessary for operation of the program. These
include information on the type of solution, the name of the Exodus file containing the
finite element data, details of the material and properties within the element blocks, which
boundary conditions to apply, etc. Details of each of these sections are covered below.

Typically, the input file has an extension of “.inp”, although any extension is permitted. If
the “.inp” extension is used, Sierra/SD may be invoked on the input without specifying
the extension.

The input file is logically separated into sections. Each section begins with a keyword
(Solution, BLOCK, etc), and ends with the reserved word end. Words within a
section are separated with “white space” consisting of tabs, spaces, and line feeds. Comments
are permitted anywhere within the file, and follow the C++ convention, i.e. a comment
begins with the two characters “//” and ends with the end of the line.1

Comments

Several options are available for a comment specifier. These are listed in Table 1. What-
ever the string used to specify a comment, it behaves in the same way, namely all characters
following the comment string are skipped. The comment string is specified by starting a the
file with one of these special strings, followed by white space. Thus if the first line in a file
is,

this is my input file for Sierra/SD

then the “#” character will be used as the comment character for that entire file. If this file
includes another file using the “include” directive (see below), that file will begin processing
using the previous comment string, unless the included file starts with one of the special
comment strings.

Table 1: Comment String Options

String Descriptor
// C++ style comments (default)
Hash character. Used in scripts and Sierra input
; Semicolon.
% percent. Used in Matlab, LaTex, etc.

1To be safe, define comments as “//” followed by a space.

4

Skipping Sections

Occasionally an entire section may need to be commented out. This may be done using
“//” on each line of the section. An other way to comment out an entire section is to begin
it with double “$$” characters, followed by a space. In the following, block 1 is commented
out, and block 4 is active.

$$ BLOCK 1 // this section skipped
material 1

END

BLOCK 4 // this section valid
material 1

END

Except for data within quotes, the input file is case insensitive. The software converts
everything to lower case unless it is enclosed in quotes. Either the single quote ’ or the double
quote " may be used. Quotes may be nested by using both single and double quotes, as in
either ’a string with "embedded" quotes’ or "a string with ’embedded’ quotes".

Preprocessing with Aprepro

Sierra employs a powerful preprocessor, “aprepro”, which can be run either stand alone,
or as part of the analysis. Aprepro can be used for a variety of purposes.

1. To define variables on the command line. This is especially useful for automated runs
such as optimization and uncertainty quantification.

2. To simplify input by allowing algebraic expressions, e.g. Y={ 4 * 3}.

3. To automatically include text of other files.

4. To manage various systems of units, e.g. Y={ 10 * psi }.

For details on aprepro in general, and for stand alone documentation, please refer to the
seacas documentation.1 All the rules for command line substitution apply to the built-in
capability. Definition of command line variables during analysis requires specification of
command line arguments, - -aprepro and - -define, as used in the example.

sierra salinas - -aprepro - -define "Eval=10E6 NuVal=0.30" -i example.inp

UNCLASSIFIED - UNLIMITED RELEASE 5

In this example, the text “Eval” in the input file, example.inp will be replaced with “10E6”.
Likewise “NuVal” will be replaced by 0.30.

Including Files

The input parser supports nested includes2. This is done using the include command.
This is the only command the parser recognizes. Files may be included to any depth. As an
example,

include english_materials

The include may occur anywhere on the line (though for readability and consistency we
recommend that it be the start of the line). The file name must immediately follow and need
NOT be enclosed in quotes. Case sensitivity will be preserved. No white space is allowed in
the file names.

Files may also be included using Aprepro processing (see the previous section). The
syntax is slightly different, but more consistent with the parser used in other modules.

{include("english_materials")}

Input Summary

Summarizing, a minimum of two files are needed to run Sierra/SD , namely, a text input
file, e.g. example.inp, and an Exodus input file,2 e.g. example.exo, which contains the finite
element model. The finite element model is specified in example.inp as the geometry file (see
section 2.11).

Each of the Sierra/SD input sections is described in the following section.

2 Prior to release 2.5 the command for including a file was “#include”. That syntax will continue to be
supported, but in release 2.5 we introduced user specified comment delimiters including the # character. If
“#” is used to start a comment, it becomes impossible to include a file using the old syntax.

6

2 Sections of a Sierra/SD Input File

2.1 SOLUTION

The solution section determines which solution method, and options are to be applied
to the model. The available solution types are shown in Table 2. Relevant options are shown
in Table 22, and are described in section 2.2.

2.1.1 Multicase

All of the solution methods of table 2 may be a part of a multicase solution. This allows
the user to specify multiple steps in a solution procedure. For example, there can be a
static preload, a computation of the updated tangent stiffness matrix, and a linearized eigen
analysis. The syntax for multicase solutions is similar to that for single cases, but each
solution step is delineated by the “case” keyword. In addition, any of the modal solutions
must be preceded by an eigen analysis and eigen keywords are no longer recognized as part
of the solution.

In a multicase solution, the system matrices (mass, stiffness and damping) will typically
be computed only once. Matrix updates between solutions may be specified by selecting the
tangent keyword (see section 2.1.30).

2.1.1.1 Multicase Parameters. Many of the solution parameters are specific to a par-
ticular solution type. For example, time step parameters are meaningless in a modal solution.
However, some options apply more generally. These parameters, listed in Table 3, may be
specified either above the case control sections, or within the section. The specification above
the case control section is the default value. Specifications within the case sub-blocks apply
only to that sub-block. In the example below, the restart options are thus “none” for most
sub cases, but “read” for the eigen analysis and “auto" for the linear transient.

2.1.1.2 Multicase Example. In the example which follows, a nonlinear statics compu-
tation is followed by a tangent stiffness matrix update. The updated matrix is then used in
an eigen analysis. Two sets of Exodus output files will be written. Output from the statics
calculation will be in files of the form ‘example-nls.exo’. Eigen results will be in the form
‘example-eig.exo’. The tangent solution normally produces no output in the Exodus
format.

Solution
restart=none
title=’example multicase’

UNCLASSIFIED - UNLIMITED RELEASE 7

Table 2: Sierra/SD Solution Types

Solution Type Description Parameters
buckling buckling eigensolution nmodes, shift
cbr Craig-Bampton reduction nmodes, shift
ceigen complex eigen
checkout skip large matrix and solves
cjdamp modal damping contributions
directfrf direct frequency response
ddam dynamic design analysis method U.S. navy methods
inverse_source_directfrf source inversion opt_tolerance, opt_iterations, ROLmethod,

data_truth_table, real_data_file,
imaginary_data_file

dump form matrices only
eigen real eigensolution nmodes, shift, untilfreq
eigenk real eigensolution of K nmodes

(seldom useful)
gap_removal gap removal debugging
largest_ev largest eigenvalue of K,M seldom used directly
modalfrf frequency response nmodes, usemodalaccel, nrbms, complex

using modal displacement
or modal acceleration

modalranvib random vibration eigen parameters
using modal superposition noSVD
check correlation matrix CheckSMatrix

modalshock shock response spectra using nmodes,
modal approximate implicit time_step, nsteps, nskip, flush
transient analysis srs_damp
(unimplemented)

modaltransient transient analysis nmodes,
using modal superposition time_step, nsteps, nskip, start_time, flush

NLstatics nonlinear statics max_newton_iterations,tolerance
num_newton_load_steps,
update_tangent

NLtransient implicit nonlinear transient time_step, nsteps, nskip, start_time, rho, flush,
analysis max_newton_iterations,tolerance

old_transient implicit transient analysis time_step, nsteps, nskip, rho, flush
(acceleration based) (can include sensitivity analysis)

Receive_Sierra_Data coupling to Sierra
statics static stress
subdomain_eigen subdomain eigenanalysis nmodes

(ONLY for debug)
tangent compute tangent matrices (multicase only)
transhock shock response spectra using time_step, nsteps, nskip, flush

direct implicit transient srs_damp
analysis

transient implicit transient analysis time_step, nsteps, nskip, start_time, rho, flush
tsr_preload thermal structural response file (multicase only)

8

Table 3: Multicase Parameters

These parameters may be specified as defaults above the case specifications, or they may be
specified for each subcase to which they apply.

Parameter Description Options
restart Restart options see section 2.2.1
solver selection of solver see section 2.2.2

case ’nls’
nlstatics
load=10

case ’tangent’
tangent

case ’eig’
eigen
restart=read

case ’trans1’
transient

restart=auto
time_step 1e-8 1e-6
nsteps 100 4000
flush 50
rho=0.9
load=20

case ’trans2’
transient

restart=auto
time_step 1e-4
nsteps 200
flush 10
load=20

END

The case keyword must always be followed by a label. The label is used in the output
file name. The case keyword is also used to divide parameters of each solution type.

The load keyword is used within a solution step to indicate which loads to apply during
a solution. In the example above, load ’10’ will be applied during the nonlinear statics
calculation. During a multicase solution the loads section (found elsewhere in the file) will
be ignored. See paragraph 2.14 for information on the loads section or paragraph 2.15 for
information on the load section of the input file.

UNCLASSIFIED - UNLIMITED RELEASE 9

2.1.2 A Note On Time Stepping In Multicase Solutions

In the multicase example provided above, compare cases ‘trans1’ and ‘trans2’. It is
important to note that case ‘trans1’ will step through 100 steps of time at a step size of
1e-8, then step through 4000 steps at a step size of 1e-6. Assuming the calculation starts at
time=0, the final time value of case ‘trans1’ will be 1e-8*100 + 1e-6*4000 = 0.004001. Case
‘trans2’ will start at 0.00400099 and run an additional 200 time steps at a step size of 1e-4.
This will end at a time value of 0.024001. (NOTE: This was not the default behavior for
Sierra/SD versions 1.2.1 or earlier).

2.1.3 Checkout

The checkout solution method tests out various parts of the code without forming the
system matrices or solving the system of equations. This solution method may be used
to check input files for consistency and completeness on a serial platform before allocating
expensive resources for a full solution.

2.1.4 CJdamp

TheCJdamp solution provides a method of computation of the equivalent modal damping
terms introduced from material damping in lightly damped visco elastic materials. It is based
on a development by Conor Johnson et al.3 It is an approximate method which assumes that
the mode shapes and frequencies are not modified by the damping. The modal damping is
simply related to the fraction of energy in block.

The CJdamp method is effectively a post processing step following an eigen analysis.
For each of the modes in the eigen analysis, a strain energy is computed on an element basis.
These are summed at the block level.

SEi
j =

in block j∑
elem

φTi K
elemφi (1)

The total strain energy TSEi is just the sum of the strain energy contributions in mode i
from all blocks. We define the block strain energy ratio for mode i as,

Ri
j = SEi

j/TSE
i (2)

The CJdamp contribution for the modal damping of mode i, is given by,

ζi = 1
2
∑
j

Ri
jηj(fi) (3)

10

Where ηj(fi) is the CJetaFunction contribution from block j evaluated at the natural
frequency of mode i (see section 2.26.10).

Note that cases following the CJdamp solution will include this
damping as part of their damping calculation.

Example,

SOLUTION
case eig

eigen nmodes=30
case cjd

cjdamp
case frf

modalfrf
END

2.1.5 Craig-Bampton Reduction

It can be advantageous to reduce a model to it’s interface degrees of freedom. This
is very important in satellite work, where the model of the satellite may be much larger
than the model of the remainder of the missile. Reduction of the satellite model to a
linearized, Craig-Bampton model makes it possible to share the dynamic properties of the
model without requiring details of the interior. There are many types of component mode
synthesis techniques (or CMS), of which the Craig-Bampton approach is one of the more
popular. In this approach the model is reduced to a combination of fixed interface and
constraint modes. The fixed interface modes are eigenvectors of the system with all interface
degrees of freedom clamped. A constraint mode is the deformation that results if one interface
degree of freedom receives a unit displacement, and all other interface degrees of freedom
are zero. There is one constraint mode per interface degree of freedom.

TheCBR solution reduces an entire structural model to its reduced system and transfer
matrices. Parameters are listed in the table below, and correspond to the parameters required
for an eigen analysis (section 2.1.10). In addition, a CBModel section must be defined
elsewhere (see section 2.31). Any boundary conditions specified are applied before reducing
the model.

We note that sensitivity analysis can be performed inCBR analysis, though the process
is somewhat different than other types of sensitivity analysis. Section 2.31 contains more
information about sensitivity analysis in Craig-Bampton models.

Parameters are listed below.

UNCLASSIFIED - UNLIMITED RELEASE 11

Parameter Type Argument
nmodes integer number of fixed interface modes
shift Real negative shift
correction string correction method for rigid body modes
RbmDof string zem selector
ModalFilter string optional modal filter

The method will write system matrices and general information. Each of the parameters is
described below.

nmodes: The CB model is composed of fixed interface modes and constraint modes. The
number of constraint modes is determined by the interface. The number of fixed
interface modes is set by this parameter. The fixed interface modes are eigen modes of
the interior of the structure, and provide a basis for internal deformation. Any number
of these modes may be specified. Typically frequencies up to about twice the system
frequency are required for good accuracy.

correction: As shown in the theory manual, the null space of the stiffness matrix is de-
termined by the sum of two large terms: κcc = Kcc + Kcvψ. With parallel iterative
solvers, it may be difficult to determine this quantity as accurately as desired. In par-
ticular, it is possible for errors in the solver to render the reduced matrices negative
definite, which can cause instability in subsequent transient analysis. It is strongly rec-
ommended that low solution tolerances be used in developing CB models. In addition,
the matrix may be post processed to correct these errors. The post processing options
are as follows:

none no correction will be applied.

values (default) no corrections will be made to the eigen vector space, but the negative
eigenvalues will be adjusted to zero.

vectors Zero energy eigen vectors are determined geometrically (which is typically
very accurate), and these are used to correct both the eigenvalues and the eigen-
vectors. This is more involved than correcting the eigenvalues alone, but it is not
a significant computational cost, and can greatly improve the usefulness of the
resulting model.
If correction=vectors is selected, one may also optionally determine which zero
energy modes are required. This is done with the RbmDof parameter. The pa-
rameter is followed by a string indicating which dofs are active on the interface.
The string contains the numbers 1 through 6, where 1 represents translation in
the x coordinate direction. These specifications apply in the basic coordinate
frame.

shift: Parallel solvers require a large negative shift. This is required to ensure that all
subdomains are non singular.

12

ModalFilter: The optional ModalFilter keyword provides a means of reducing the
modes retained for output and for subsequent analysis. For more details, see section
2.32. You can also put the modal filter into a separate case, called preddam, 2.1.6.

An example follows.

SOLUTION
case cbr

cbr
nmodes=20 shift=-4e6
correction=vectors
RbmDof=’123’

END

Inertia Tensor for Craig-Bampton Reduction. The capability to output a reduced
inertia matrix, I from a Craig-Bampton Reduction (CBR) analysis is also available. The
input file syntax is described in the CBModel section, 2.31. I is defined by

I = ΦTR,

where Φ is the matrix of mode shapes used for the CBR analysis and consists of both fixed-
interface modes and constraint modes. The number of rows in I is the number of (a-set)
degrees of freedom in the model and the number of columns is the number of CBR modes.
R has the same number of rows and one column per rigid body mode. For example, for
just the three translational rigid-body modes and assuming just three degrees-of-freedom
per finite element node,

R =

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
...

.

UNCLASSIFIED - UNLIMITED RELEASE 13

Note the following limitations for the CBR method.

• In serial, no MPCs may share nodes with interface nodes. Oth-
erwise the MPCs may eliminate the dofs that should be retained.
For parallel domain decomposition solvers (such as FETI), this
restriction is relaxed.

• The entire reduced order model and associated transfer matrix
must fit into memory. On a parallel machine, this memory is
required on every processor. The model dimension is the sum of
the number of constraint and fixed interface modes.

• The reduction process involves static solutions of the system with
all interface degrees of freedom clamped. Such a solve may be
singular if the interface dofs do not properly constrain the system.
In such cases the solution is not reliable. It is a good idea to verify
the reduced order eigen solution against the full system. One may
also compare the retained mass.

2.1.6 Dynamic Design Analysis Method (DDAM)

The U.S. Navy Dynamic Design Analysis Method (DDAM) is an established procedure
employed in the design for ship equipment and foundations for shock loading requirements.
The details of the formulation, specific procedures for application, acceptance criteria, etc.,
are documented in NAVSEA Report 250-423-30 and NAVSEA 0908-LP-000-3010. Support
for performing DDAM calculations, as implemented in the Sierra/SD Finite Element Code,
is documented both in the Sierra/SD Users’ manual as well as in the DDAM Primer. The
user is expected to be fully familiar with both cited NAVSEA publications.

DDAM is focused on five main phases, problem formulation phase, mathematical mod-
eling phase, coefficient computation phase, dynamic computation phase, and the evaluation
phase. DDAM as implemented in Sierra/SD, will focus primarily on the evaluations phase.
This phase assesses modal analysis, modal filtering, displacement, velocity, acceleration,
force, Von Mises stress calculations and all NRL sums.

DDAM does have a few limitations. The equipment to be analyzed must be represented
as a linear elastic system with discrete modes. Damping is neglected. For very low frequency
systems, DDAM may not be appropriate, and, where closely spaced modes exist, DDAM
may produce excessive responses.

Current DDAM capabilities in Sierra/SD are as follows.

1. Select modes by frequency limits.
Sierra/SD doesn’t have the capability to select modes by frequency limits. The user
must choose the number of modes, nmodes, in case 1, eigen, and continually increase

14

nmodes and restart or rerun eigen analysis until the desired frequency level is reached.
This step is recommended to be completed before case 2: preddam and case 3: ddam
are included and analyzed.

2. Include modal masses that include at least 1% individually of the total modal mass
User must manually add any extra needed modes using “add” in modalfilter block.

3. The user may verify PREDDAM (case 2) and DDAM (case 3) by examining filtered
modes, participation factors, modal weights, shock design coefficients and values found
in the following text files.

(a) preddam → PREDDAM_RESULTS.txt
(b) ddam → DDAM_RESULTS.txt

4. Incorporate a 6*g minimum load requirements. This is hard coded and not a user
option.

5. DDAM with complex models that consist of multiple element types.

6. DDAM Analysis using Super Element Capability

7. Displacements, Velocities, Accelerations, Forces output, by node, to and accessible in
the output exodus file.

8. Von Mises stresses output, by element, to and accessible in the output exodus file.

9. Ship directions must match coordinate direction (Vertical → Z-direction, Athwartship
→ Y-direction, Fore and Aft → X-direction)
Directions must match between preddam inputs modalfilter block, load block, and
ddam input analysis_direction

10. DDAM Analysis using symmetric boundary conditions

11. DDAM Analysis of all models in parallel.

12. Post processing available for all DDAM modal variables and all DDAM NRL summed
variables (Paraview - graphical, grope, blot, exo2mat - data extraction)

Future capabilities will include:

1. Analyses of closely space modes

2. Verification of antisymmetric boundary conditions

3. Demonstrate ability to perform DDAM analysis where input direction is arbitrary to
orthogonal axis of the model (Currently the x,y,z directions must line up with the
vertical, athwartship and for and aft ship directions)

UNCLASSIFIED - UNLIMITED RELEASE 15

4. Constraint forces

5. Elemental forces

6. All output written to the exodus file

7. Automatic inclusion of all modes which contributing 1% or greater to mass, that aren’t
included in the first filtering.

8. Output DDAM beam bending and shear stresses.

The DDAM solution is divided into three cases, case 1, eigen, case 2, preddam, and case
3, ddam.

Case 1, eigen: is modal analysis already implemented into Sierra/SD. The parameters, as
they pertain to DDAM, are shown in the table below. More information on the keyword
eigen and its inputs may be obtained in section 2.1.9.

Parameter Argument Default
nmodes Integer 10
shift Real required for parallel analysis of floating structures

Note: The standard Sierra/SD specification for eigen analysis
is “nmodes=<number>”, where <number> is an integer value
for the requested number of modes. This capability is limited
to compute approximately half the modes of the system. For
verification purposes a limited capability exists to compute all
the eigenmodes. This capability runs only in serial, and only on
very small models. It is selected by “nmodes=all”.

Case 2, preddam: utilizes the eigenvectors and system mass matrix produced in case 1,
eigen, to calculate and filter the modal participation factors, modal weights, individual
modal weight percentage, cumulative modal weight, and cumulative modal weight
percentage. Preddam requires two inputs shown below.

Parameter Argument Default
Modalfilter String None
Load Integer None

Modalfilter is implemented as a part of Sierra/SD and may be used as a part of
other solution methods. Modalfilter provides a means of filtering data taken from the
modal analysis and the participation factors. Modalfilter parameters as they pertain
to DDAM are:
More information on the keyword modalfilter may be found in section 2.32. Finally, a
load block should be defined. This load block (in Sierra/SD DDAM analysis) specifi-
cally applies to the value of gravitational loading (-386.4) and its direction must match

16

Parameter Argument
Remove Integer list
Cumulative mef 6 fractions
Add Integer list

Section Keyword Parameter
Load Gravity val1 val2 val3
Scale factor multiplier Scale Val1

DDAM analysis direction defined in the MODALFILTER block and in case 3: DDAM.
The parameters for the load block pertaining to preddam are as follows:

NOTE: preddam must be run following eigen in order to obtain
necessary modal data for preddam calculations. Preddam may
be run without case 3, ddam.

Case 3, ddam: uses filtered eigenvalues and mode shapes from case 1: eigen and filtered
modal participation factors and modal weights from case 2: preddam, to calculate shock
design coefficients and values, filtered modal displacements, velocities, accelerations,
forces, Von Mises stresses, and NRL sum. The inputs are as follows:

Parameter Argument Choices
analysis_direction String VERTICAL or ATHWARTSHIP or FORE_AFT
ship_type String SURFACE_SHIP or SUBMARINE
mount_type String HULL or DECK or SHELL_PLATING
response_type String ELASTIC or ELASTICPLASTIC
velocity_coeffs Values v1 v2 v3 v4
acceleration_coeffs Values a1 a2 a3 a4 a5 (a5 case specific)

An example is shown in Figure 1.
NOTE: Case DDAM may only be run following Preddam and
Eigen.

2.1.7 Directfrf

Option directfrf is used to perform a direct frequency response analysis. In other
words, we compute a solution to the Fourier transform of the equations of motion, i.e.(

K + iωC − ω2M
)
u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier transform of
the applied force. The method used is to compute the frequency dependent matrix A(ω) =
K+iωC−ω2M , and frequency component of the force at each frequency point at the output.
The matrix equation is then solved once per frequency point. When a direct solver is used,
this means that a complex factorization must be performed once per output. This can be

UNCLASSIFIED - UNLIMITED RELEASE 17

SOLUTION
case 1

eigen
nmodes = 4

case 2
preddam

modalfilter vertical
load 1

case 3
ddam

analysis_direction VERTICAL
ship_type SURFACE_SHIP
mount_type HULL
response_type
velocity_coeffs 1.4 5.2 220.1 12.2
acceleration_coeffs 1.0 2.0 3.0 4.0 5.0

END
MODALFILTER vertical

remove 1:500
// x y z Rx Ry Rz
cumulative mef 0.0 0.0 1.0 0.0 0.0 0.0 //VERTICAL

END
LOAD 1

body
gravity

0.0 0.0 1.0
scale -386.4

END

Figure 1: DDAM Example Input

18

very time consuming, and the modalfrf may be a better option for many situations (see
section 2.1.18).

The force function must be explicitly specified in the load section, and MUST have a
“function” definition. Note that the force input provides the real part of the force at a given
frequency, i.e. it is a function of frequency, not of time.

The parameters freq_step, freq_min, and freq_max are used to define the
frequencies for computing the directfrf. They are identified in the frequency section along
with an application region (see section 2.10). The range of the computed frequency response
is controlled by freq_min and freq_max, while freq_step controls the resolution.

In addition to the output that is sent to the .frq file, output may also be written to
the Exodus file during a directfrf, provided that the keywords are specified in the output
section. If nothing is specified in the output section, then nothing is written to the Exodus
output files.

The expression “frf” is often interpreted as the ratio of output/input.
There are very good reasons for using that ratio, including the confu-
sion that can come from scaling the Fourier transform. The Sierra/SD
code computes the output and does not compute a ratio. If the ratio is
required, use a function with unit load as the input.

2.1.7.1 Padé Expansion: Computation of each frequency response is expensive because
the system matrices must be computed, factored and solved once at each frequency. A cost
effective approach is to use a much coarser computational grid for full computation, and
use a rational function (or Padé) expansion for intermediate points.3 The two additional
parameters are required for the expansion, are listed in table 4. They are described below,
and an example is shown in Figure 2. The theory is described in reference 4.

Parameter Default Description
interpolate points 0 Number of additional points to inter-

polate. If zero, no interpolation is
performed.

interpolate order 20 Order of the rational function expan-
sion.

Table 4: DirectFRF Parameters for Padé Expansion

3A rational function expansion is similar to a Taylor series expansion, but is capable of approximating
resonant behavior.

UNCLASSIFIED - UNLIMITED RELEASE 19

solution
case out

directfrf
INTERPOLATE POINTS = 50
INTERPOLATE ORDER = 18

end

Figure 2: Padé Expansion Input Example. In this example, each
exactly computed direct frequency response point will be separated
by 50 interpolated values. These values will be determined using a
Padé expansion of order 18.

2.1.8 inverse_source_directfrf

Option inverse_source_directfrf is used to perform an inverse direct frequency
response analysis in order to determine the amplitude of one or more sources in the model,
given a set of measured acoustic pressures at a discrete set of points. It currently only works
for purely acoustic models, without any structural coupling. The source amplitudes that can
be predicted at this time are the acoustic accelerations on a set of sidesets. The input syntax
for various acoustic loads is given in 2.14.6. At this time, only the acoustic_accel option
can be used in the inverse source problem. Structural sources, such as concentrated forces,
pressures, and traction loads are not currently supported but are planned for upcoming
releases.

In a forward directfrf analysis, we compute a solution to the Laplace transform of the
equations of motion, i.e. the Helmholtz problem

(
K + iωC − ω2M

)
p = f(ω)

where p is the Laplace transform of the acoustic pressure, p, and f is the Laplace transform
of the applied force.

In the inverse problem, the acoustic pressure p is known at a discrete set of points (which
could be measured experimentally with a set of microphones) and the goal is to compute
the corresponding amplitudes of the input forces, in this case the real and imaginary values
of acoustic_accel as a function of frequency. In the inverse_source_directfrf
solution method, the user provides a set of experimentally measured acoustic pressures in a
file format, and after the inverse solution is complete, the code writes a data file containing
the predicted real and imaginary parts of the acoustic_accel on each sideset that is
specified in the input deck. Below we will describe the input parameters for the format of
the inverse_source_directfrf solution method, the format of the input experimental
data files, and the corresponding output from the inverse solution.

20

2.1.8.1 Parameters for inverse_source_directfrf solution method. The pa-
rameters for the inverse_source_directfrf solution method are given in Table 5.

Parameter Argument Default
opt_tolerance Real 1e−10

opt_iterations Integer 20
ROLmethod String SR1
data_truth_table String required
real_data_file String required
imaginary_data_file String required

Table 5: Parameters for inverse_source_directfrf solution method. Three param-
eters corresponding to the data file names are required. The code will error out if these are
not specified.

The opt_tolerance keyword specifies the tolerance to be used by the optimization solver
for convergence. Once the normalized objective function becomes smaller than this value,
the code will return the current iterate as the converged solution. The opt_iterations
keyword specifies a maximum number of iterations for the optimization solver. The Trilinos
Rapid Optimization Library (ROL) is an optimization package that is currently being de-
veloped at Sandia. Sierra/SD is currently interfaced with the Rapid Optimization Library
(ROL), which provided several optimization algorithms in both serial and parallel. Once the
iteration count in ROL exceeds opt_iterations, the inverse solver will return the current
iterate and stop. Thus, if the user wishes to converge to a specified tolerance, the best ap-
proach would be to set the opt_tolerance to the desired value, and opt_iterations
to a large number.

2.1.8.2 Solution Section. An example of the syntax for the SOLUTION block is
given below

SOLUTION
inverse_source_directfrf

opt_tolerance 1.0e-12
opt_iterations 1000
data_truth_file ’ttable.txt’
real_data_file ’datareal.txt’
imaginary_data_file ’dataimag.txt’
ROLmethod BB

END

2.1.8.3 Loads Section. In the LOADS section, an additional argument needs to be
added in the case of inverse problems, since in this case the loads are actually unknown,

UNCLASSIFIED - UNLIMITED RELEASE 21

rather than a specified value as in the case of a forward problem. Since the only capability
that is supported currently is acoustic source inversion, we give an example below of the
specification. We currently support the case where known and unknown loads are present
in a given problem.

LOADS
sideset 500

inverse_load_type = SPATIALLY_CONSTANT
acoustic_accel = 10.0
function = 1

sideset 500
inverse_load_type = SPATIALLY_CONSTANT
iacoustic_accel = 10.0
function = 2

sideset 501
inverse_load_type = KNOWN
acoustic_accel = 10.0
function = 3

END

In this case, there are two sidesets, 500 and 501. Sideset 500 has unknown loads, and thus it
has inverse_load_type specified as SPATIALLY_CONSTANT. The first
two load blocks correspond to the real and imaginary parts of the load on sideset 500.
Thus, the acoustic_accel and corresponding functions 1 and 2 given for this sideset are
initial guesses, not the final solution. A zero initial guess can easily be specified by setting
acoustic_accel to 0. The SPATIALLY_CONSTANT keyword implies that
the acoustic_accel is unknown, but will be treated as constant over the entire sideset.
Thus, this problem has just two unknown functions in the inverse problem. Another option
that is currently under development is theSPATIALLY_VARIABLE option, which
implies that each node on the sideset has an unknown value of acoustic_accel for the
inverse problem. The SPATIALLY_VARIABLE option is currently not completed
and thus is not active, but is expected to be completed soon. On the other hand, the
inverse_load_type for sideset 501 is known, and thus it is a given, known load.
Thus, the inverse problem in this case would only solve for the unknown real and imaginary
amplitudes of acoustic_accel for sideset 500, as a function of frequency. It is important
to mention that the default value for the keyword inverse_load_type isKNOWN.
Therefore, if a user does not specify this keyword, the load is treated as known in the problem.

2.1.8.4 Format of input experimental data files. Three data files are required in
order to solve the inverse problem, as shown in Table 5.

The data_truth_table file contains the global node ids where the experimen-
tal data measurements are given. The first line in the file contains the number of points

22

where measurements are given, and the remaining lines contain the global node num-
bers where the experimental data is specified. For example, if the experimental data was
collected at three microphones, which correspond to nodes 10, 120, and 3004, then the
data_truth_table file would look as follows

3
10
120
3004

Thus, there are a total of 4 lines in the file, even though the first line specifies three nodes
for the measurement data.

The real_data_file file contains the real component of the measurement data at
each frequency, corresponding to the nodes that are specified in the data_truth_table
file. The first line of the file contains the number of nodes where measurement data is
provided, followed by the number of frequencies of data. Starting on the second line, the
real part of the data at the first node is given for all frequencies. Similarly, each subsequent
line contains the real part of the data, at all frequencies, for the second node.

For example, if we build on the small example given above that has measurements at
nodes 10, 120, and 3004, and consider the case where there are 2 frequencies in the data set,
then the real_data_file file could look as follows

3 2
1.1 2.4
0.7 3.3
2.1 1.4

The actual values in the above table were chosen arbitrarily, but the main point is that there
are 3 rows, corresponding to the 3 measurement nodes, and 2 columns, corresponding to
the two frequencies of the measured data. Since the current inverse capability is restricted
to acoustic problems, the units of the data given in these files must correspond to acoustic
pressure.

The frequencies of the measured data are specified in the FREQUENCY section,
see 2.10. The frequencies given by FREQUENCY section must correspond to the
frequencies where the experimental data was measured. These frequencies can be either
uniformly or non-uniformly spaced, as specified in the FREQUENCY section.

The imaginary_data_file file has the exact same format as the real_data_file
file, except that it contains the imaginary part of the data rather than the real part.

2.1.8.5 Selection of the ROLmethod parameter. The ROLmethod param-
eter specifies the optimization method to be used to solve the inverse problem. Currently,

UNCLASSIFIED - UNLIMITED RELEASE 23

there are 5 algorithms that can be chosen, as shown in Table 6. Each method has its own
advantages and disadvantages. The default method is the SR1 method. We note that the
SR1, BFGS, and BB methods approximate the Hessian operator of the problem. The
latter methods use only gradient information and display super linear convergence (at best).
In the future, we intend to extend the suite of available methods to include Newton methods
that display second-order convergence.

ROL method Description
SR1 Symmetric Rank 1 Update
TRSTEEPESTDESCENT Trust Region Steepest Descent
LSSTEEPESTDESCENT Line Search Steepest Descent
BFGS Broyden Fletcher, Goldfard, and Shanno
BB Barzilai-Borwein

Table 6: User options for the ROLmethod. Each method corresponds to a different opti-
mization algorithm.

Output from the inverse problem solution

The output from the inverse_source_directfrf consists of a table of real and
imaginary values of acoustic_accel for each of the sidesets that are specified as being un-
known in the LOADS section. The output is written to a text file named
“force_function_data.txt”. In the example given above, there are only two unknown func-
tions, with two corresponding frequencies. If we assume that those frequencies are 2Hz and
3Hz, then the output file force_function_data.txt could look as follows

Function 1 // real part of acoustic_accel applied to sideset 500
Data Value
2.0 8.592817e-01
3.0 -4.353051e-01
Function 2 // imaginary part of acoustic_accel applied to sideset 500
Data Value
2.0 -3.453363e-01
3.0 2.466722e-02

Note that for each unknown function, the first line gives the function number, in this case
functions 1 and 2, since these are the only unknown functions. The next lines give the
frequency followed by the predicted value of the function. For multiple unknown functions,
this output would be repeated in the force_function_data file for each function.

Once the inverse problem is completed and the force_function_data.txt file
has been written, it is recommended that the user construct a new input deck for a forward

24

problem consisting of a directfrf analysis, with the functions given by what was output in
the force_function_data.txt file. If the inverse problem was solved correctly, the
acoustic pressure at the nodes where the experimental data was taken (that is, the nodes
listed in the data_truth_table file) should correspond to the real and imaginary parts
of the pressure as given in the real_data_file and imaginary_data_file files.

It is crucial that the user checks the ROL_messages.txt file written at the end of the
execution to verify that the objective function and norm of the gradient values are sufficiently
low. The objective function value is reported in the second column under the heading “Obj
Value". Optimality requires that the norm of the gradient be zero. The latter is reported in
the ROL_messages.txt file in the column “norm(g)". The user should check that the norm of
the gradient is indeed close to zero before accepting a solution. Finally, the user should always
keep in mind that inverse problems may be ill-posed in the sense that multiple solutions may
exist and the solution may be unstable. About the former, it is avised that the user solves
an inverse problem using a handful of sufficiently different initial guesses and confirms that
indeed the same solution is obtained for each case. Moreover, no regularization is currently
implemented for source identification problems in the frequency domain. Therefore, the user
should carefully check that solutions are physically meaningful before accepting them.

The algorithm currently provided in Sierra/SD for source inversion is only a first-order
method. Thus, convergence could take several iterations, especially if the initial guess is
too far from the true solution. In order to obtain the desired second-order convergence, a
Hessian operator would need to be implemented. This is in the plans, and once implemented
will require only minor changes to the user interface or input decks.

2.1.9 Dump

The keyword dump will cause Sierra/SD to form matrices only and no solution will be
obtained.

2.1.10 Eigen

The eigen keyword is needed to obtain the eigenvalues and mode shapes of a system. The
parameters which can be specified for an eigensolution are shown in the table below, and
described immediately following.

Parameter Argument Default
nmodes Integer 10
shift Real 0

untilfreq Real 0
ModalFilter string none

UNCLASSIFIED - UNLIMITED RELEASE 25

nmodes This parameter specifies the number of modes to compute. With the exception
of the direct eigen method (section 2.1.11), the modes are computed beginning with
the lowest frequency. The calculation continues until nmodes have converged. An
iterative Lanczos type method is used.
Specifying “nmodes=all” calls the direct eigen solver, which disables many of the other
options, and is limited to small, serial models. See section 2.1.11.

Shift The shift parameter provides a means for solving singular systems. See the discussion
below.

UntilFreq The untilfreq keyword provides an additional method of controlling the eigen-
spectrum to be computed. If this value is provided, then the analysis will be auto-
matically (and internally) restarted until the frequency of the highest mode is at least
the value of the untilfreq. This restart capability is somewhat crude. There are
always nmodes new modes computed on each calculation. Also, because there can
be inaccuracies associated with restarting the eigensolver,4 we restart a maximum of
5 times.5

ModalFilter The optional ModalFilter keyword provides a means of reducing the
modes retained for output and for subsequent analysis. For more details, see sec-
tion 2.32. You can also put the modal filter into a separate case, called preddam,
2.1.6.

2.1.10.1 Eigenanalysis of singular systems

The eigenvalue problem is defined as,

(K − ω2M)φ = 0. (4)

Where K and M are the stiffness and mass matrices respectively, and ω and φ are the eigen
values and vectors to be determined. The problem may be solved using a variety of methods
- the Lanczos algorithm is used in Sierra/SD . In this method, a subspace is built by
repeated solving equations of the form Ku = b. For floating structures, or structures with
mechanisms, K is singular and special approaches are required to solve the system. The two
approaches used in Sierra/SD are described below.

Deflation. If it is possible to identify the singularity in K, then the null vectors of K are
eigenvectors (with ω = 0), and the system can be solved by insuring that no component
of the null vectors ever occurs in b. This approach is equivalent to computing the pseudo
inverse of K.

4 We use the ARPACK Lanczos solver for the eigen problem. This solver maintains the orthogo-
nality of the eigenvectors for a single batch of modes. However, when we restart it, we must deflate out the
previously computed modes. There can thus be a slight loss of orthogonality. When we repeatedly restart,
the effect can be significant.

5We anticipate that in the future, this keyword will be retired when better control methods are provided.

26

The strength of deflation is that if the eigenvectors can be determined exactly, the
Lanczos algorithm is unaltered and the remaining vectors can be determined somewhat
optimally. The difficulty is ensuring that we have correctly determined the eigenvectors,
especially when mechanisms or multipoint constraints exist in the model. Determina-
tion of the eigenvectors is often a tolerance based approach that has not been as robust
as we would like.

Shifting. The second method involves solution of a modified (or shifted) eigenvalue problem.

((K − σM)− µM)φ = 0. (5)

This system has the properties that the eigenvectors, φ, are unchanged from the original
equation, and the eigenvalues, µ, are simply related to the original values. Namely,
µ = ω2 − σ.
The shifted problem benefits from the fact that K − σM can be made nonsingular
(except in very rare situations). This is done by choosing σ to be a large negative
value. Unfortunately, the Lanczos routine convergence is affected if σ is chosen to be
too far from zero2. A reasonable value is σ = −ω2

elas, where ωelas is the expected first
nonzero (or elastic) eigenvalue.

On serial platforms we support only the shifted method. Because of the higher accuracy
of direct solvers, a small negative shift is normally sufficient to solve the problem. This
shift (usually -1) is computed automatically. We do not recommend that you override the
defaults.

When using the FETI solver on parallel platforms both methods are available. If deflation
is used, user input (and careful evaluation) may be required to ensure that all global rigid
body modes have been properly identified. The relevant FETI parameters are rbm and
grbm_tol as described in appendix 5.4. The shifted eigenvalue problem has proven to be
more robust for many complex problems. Set the grbm_tol to a small value (e.g. 1e-20),
and manually enter a negative shift. The output should still be examined to ensure that no
global rigid body modes are detected.

If the model is not floating and has no mechanisms, the system is not singular, and no
shift should be used (as it may slow convergence).

Example

A SOLUTION section for an eigenanalysis with a shift of −106 , will look like the
following, if 12 modes are needed. This shift would be appropriate for a system where the
first elastic mode is approximately 150Hz.

2 If σ is too large a negative value, many solves will be required to determine the eigenvalues (which
consequently slows convergence). Another consequence is that often not all redundant, zero eigenvalues may
be found. They may be found by reducing the shift, tightening tolerances or by restarting.

UNCLASSIFIED - UNLIMITED RELEASE 27

Solution
eigen
nmodes 12
shift -1.0e6

end

2.1.11 Direct Eigen Solution

The standard methods for eigen analysis are based on iterative methods, which build a
Krylov subspace from which the solution is determined. These methods are optimized to
find a few a the eigen modes of the system, which is typically what is needed for structural
analysis. The direct solution provides a means of computing all the modes of the system.
It is limited to small, serial solutions. No shift is available. The method is provided for
support of the need for small verification problems. It is selected using “nmodes=all” in
a standard eigen analysis. Note: this option does not work if any multipoint constraints are
present in the model.

2.1.12 AEigen

The standard eigenvalue methods of section 2.1.10 use the ARPACK eigensolver to arrive
at the solution (see reference 5). This is a powerful, public domain solver and has been very
successful. However, new solver approaches are being developed. The AEigen keyword
selects the eigen solvers developed in the Anasazi package (see reference 6).1 Anasazi is a
module in Trilinos.

The eigenvalue problem of equation 4 is symmetric. Anasazi provides three eigensolvers
capable of solving symmetric eigenvalue problems. These methods have differing levels of
maturity as indicated in Table 7. Parameters for the solution are listed in Table 8.

Method Description Maturity
BKS Block Krylov-Schur solver7 good
BD Block Davidson solver8 fair

LOBPCG Locally Optimal Block Preconditioned Conjugate Gradient9,10 poor

Table 7: Development AEigen methods

The BKS solver is the defaultAEigen solver, and can be specified by setting ansolver
to “BKS”. The BKS solver operates in a similar manner to the Lanczos solver discussed in
section 2.1.10. A subspace is built by repeatedly solving systems of the form (K − σM),
where σ is the shift specified by keyword shift; see 2.1.10 for more discussion on shifting.

1 An eigensolution requires both a linear solver and an eigensolver package. The iterative solution of the
eigenvalue problem is a nonlinear iteration that requires multiple linear solves.

28

Parameter Argument Default BKS BD LOBPCG
nmodes Integer 10
ansolver String “BKS”
anverbosity Integer 1
shift Real 0 - -
anuseprec Yes/No - Yes Yes
anmaxiters Integer - - 100
annumrestarts Integer 5 5 -
anblocksize Integer 1 nmodes nmodes
annumblocks Integer -1 - -
aneigen_tol Integer 10̂-16 - -

Table 8: AEigen optional parameters. Note that if parameters are supplied which do not
apply to a particular eigensolver, they are silently ignored.

The keyword annumrestarts allows the specification of the number of restart steps.
The default is 5, as with eigen. Unlike ARPACK, Anasazi employs block solvers. That
is, the subspace generated by the BKS iteration adds multiple vectors at each step, where
ARPACK adds only a single vector. The number of vectors is specified by the keyword
anblocksize. The default block size for the BKS solver is 1, producing a similar iteration
as with eigen.

The remaining Anasazi solvers, block Davidson and LOBPCG, are specified by set-
ting keyword ansolver to “BD” and “LOBPCG”, respectively. These solvers differ from
ARPACK and BKS in that they do not require exact linear system solves to compute the
eigenvectors. Instead, an approximate solve can be used to improve the convergence rate
of the eigenvalue iteration, a technique known as “preconditioning”. It is important to note
that the quality of the eigensolutions does not depend on the quality of the linear solve;
this affects only the number of iterations required to perform the eigenanalysis. Shifting
is not necessary when using block Davidson or LOBPCG. The use of the linear solver as
a preconditioner for block Davidson and LOBPCG can be disabled by setting the keyword
anuseprec to No. This keyword has no effect on the BKS solver.

Block Davidson is similar to BKS in that it builds a subspace. When the subspace reaches
its maximum allocated size, the method is restarted. As with BKS, the number of restarts
allowed is specified by the keyword annumrestarts. The LOBPCG solver, on the other
hand, does not utilize a restarting mechanism. The termination of the LOBPCG solver is
controlled by a maximum number of iterations, specified by the keyword anmaxiters. The
default block size for block Davidson and LOBPCG is the number of modes to be computed,
though the block size may be set larger or smaller than this amount. A larger block size
may improve the rate of convergence, at the expense of higher memory requirements. A
smaller block size will reduce the memory footprint of the solvers, but may slow the rate of
convergence.

All of the Anasazi solvers are capable of varying levels of verbosity, controlled by the

UNCLASSIFIED - UNLIMITED RELEASE 29

keyword anverbosity. Setting anverbosity allows us to specify what information
is printed by the solver. The default value is 1, implying that the Anasazi solvers will
output only errors and warnings. Each verbosity type is controlled by a single bit in the
integer anverbosity. These types are listed in Table 9. Each combination is valid,
the combinations being formed by adding different verbosity values. For example, setting
anverbosity to 25 = 0+1+8+16 requests output for Errors, Warnings, Final Summary
and Timing Details.

The annumblocks dictates the maximum size of the basis for BKS. A value of -1
signifies the default, which is computed based on the number of eigenmodes requested.

Verbosity type Value
Errors 0
Warnings 1
Iteration Details 2
Orthogonalization Details 4
Final Summary 8
Timing Details 16
Status Test Details 32
Debug 64

Table 9: AEigen Verbosity Table

2.1.12.1 Example 1, BKS.
A SOLUTION section for eigenanalysis using the Anasazi solver “BKS” with a shift
of −106 , looks like the following, if 12 modes are needed. The shift is appropriate for a
system where the first elastic mode is approximately 150Hz. This produces an eigenanalysis
equivalent to the example given in 2.1.10 for eigen. The verbosity level specifies that after
finishing the eigenanalysis, the solver will print status information (number of iterations,
current eigenvalues) and timing statistics.

Solution
aeigen
nmodes 12
shift -1.0e6
ansolver BKS
anblocksize 1
anverbosity 25

end

2.1.12.2 Example 2, LOBPCG.
A SOLUTION section for an eigenanalysis using the Anasazi solver “LOBPCG” for the

30

above problem follows. Notice that the shift has been set to zero. The solver is allotted
500 iterations to find the solution, and anuseprec indicates that it will exploit the linear
solver as a preconditioner.

Solution
nmodes 12
shift 0
aeigen
ansolver LOBPCG
anblocksize 12
anmaxiters 500
anuseprec yes
anverbosity 25

end

2.1.13 Blk_eigen

The blk_eigen is used to provide the analyst with the ability to do an eigenanalysis
on only a subsystem of the model defined by blocks. This is convenient if the analyst is
concerned with only a certain part of the system. It is also used to implement nonlinear
distributed damping as discussed in section 2.36.2. The parameters shift and nmodes
are supported in this solution and are defined in section 2.1.10. An example of the input file
would be as shown below.

SOLUTION
case ’blockeig’

blk_eigen
block 1:3, 5, 20

shift -1e6
nmodes 10

block 4, 6:19
shift -1e5
nmodes 6

case ’nonlinear’
nltransient

nsteps = 200
time_step = 5.0e-3
rho = 0.8

END

This method has some limitations. Obviously it is a linear solution method, so nonlinear ele-
ment blocks use the currently defined tangent stiffness matrix. It is meaningless to compute

UNCLASSIFIED - UNLIMITED RELEASE 31

eigen solutions on combinations of blocks that are overconstrained. For example, computing
the eigen solution of a block of RBARS alone will fail.

2.1.14 Eigenk

The eigenk keyword is used to obtain the eigenvalues and eigenvectors of the stiffness
matrix of the model. This is equivalent to eigen if the mass matrix is equal to the identity
matrix. The same parameters apply.

IT IS CURRENTLY ONLY AVAILABLE ON SERIAL PLATFORMS.

2.1.15 Largest_Ev

The Largest_Ev keyword is used to obtain the largest eigenvalue of the system, i.e.

(K − λM)φ = 0

This eigenvalue is seldom of use in practical analysis. It is typically used in calculation of
the stable time step for explicit time integration, where the analyst does not need to call
this step directly. There are no arguments to the solution method.

2.1.16 Buckling

The buckling keyword is used to obtain the buckling modes and eigenvalues of a system.
The parameters which can be specified for a buckling solution are shown in the table below.
By default, if nmodes is not specified, a value of 10 is used.

Parameter Argument Default
nmodes Integer 10
shift Real 0

The shift parameter indicates the shift desired in a buckling analysis. The shift value
represents a shift in the eigenvalue space (i.e. ω2 space). The value to select is problem
dependent.

The nmodes parameter specifies the number of requested buckling modes. Most com-
monly, only the critical (lowest) buckling mode is of interest, and in that case nmodes
would be specified to be 1. However, there are cases when the first few buckling modes are
of interest, and thus this parameter can be specified in the same way as in eigenanalysis.

Unlike eigenanalysis, buckling solution cases require a loads block. This is because
buckling is always specified with respect to a particular loading configuration. For example,

32

for a pressure load applied on a sideset, the buckling analysis would indicate the critical
amplitude of the applied pressure needed to cause buckling. The critical buckling load is
computed as the product of the first (lowest) eigenvalue times the amplitude of the applied
load. Thus, for the case

LOADS
sideset 1
pressure = 10.0

END

and a lowest obtained eigenvalue of 100.0, the critical buckling pressure would be com-
puted as Pcr = 100.0× 10.0 = 1000.0. This would indicate that buckling would occur if the
loading were applied as,

LOADS
sideset 1
pressure = 1000.0

END

Similar conclusions can be drawn about force loads on nodesets.

Buckling solutions cannot be computed for floating structures. If there are global rigid
body modes, the solution may not be correct. Also, for meshes with MPCs, only parallel
solution is possible. Serial buckling solutions with MPCs cause a fatal error in the constraint
transformations. This error will be eliminated in future versions.

One additional constraint on buckling is that currently beams and shells cannot be used
in buckling solutions. We expect to eliminate this restriction in future releases.

Example

A SOLUTION section for buckling analysis with a shift of −106 , will look like the
following, if only 1 mode is needed (i.e. if only the critical buckling load is of interest).

Solution
buckling
nmodes 1
shift -1.0e6

end

UNCLASSIFIED - UNLIMITED RELEASE 33

2.1.17 Modal Participation Factor

The modal effective mass or modal participation factor are means of determining the
nature of the eigenvectors of a solution. More particularly, the modal participation factor
measures the fraction of an eigenvector that has the character of a rigid body mode of the
system. This is used to determine the interaction of these modes with gravity loads. Any
vector (including the eigen modes of a constrained system) may be expressed in terms of the
eigen modes of an unconstrained system.2 Thus,

v =
6∑
i

γiRi +
N∑
i′=7

βi′φ̄i′ (6)

where Ri represents a rigid body mode, and φ̄i′ represents the remaining (non-zero energy
modes) of the unconstrained structure. When v is an eigenvector of the constrained system,
the modal participation factor is defined as follows.3

Γij = RT
i Mvj√

(RT
i MRi) (vTj Mvj)

(7)

Obviously, Γij is a mass normalized measure of the contribution of a given rigid body term,
γi, to the vector, vj. A summary term which represents the total fraction of a vector that is
spanned by all rigid body modes is also useful.

MPFj =
6∑
i

Γ2
ij (8)

The MPF method computes these participation factors for the eigenvectors of a system.
This method must be used as part of a multicase solution, and the previous case must be
an eigenvalue problem (see section 2.1.10). Further, this method (by default) computes the
modal participation factor on a block by block basis. Thus, those portions of the model that
most contribute to the rigid body motion may be determined.4 Then,

Γkij = RT
i M

kvj√
(RT

i MRi) (vTj Mvj)
(9)

Parameters for the MPF method are listed in Table 10.
2 All the eigen modes of an unconstrained system fully span the space of the constrained system, but the

system may not converge rapidly. Likewise, the eigen modes of the constrained system together with the
constraint modes span the same space.

3 One important detail is the space on which these calculations are performed. In Sierra/SD we expand
vector v to the unconstrained space, and we used a lumped representation for the mass matrix, M .

4The overall modal contribution is not the sum of the block wise contributions, and contributions from
individual blocks may cancel other blocks. See Table 11.

34

Parameter argument Description
write_table Y/N “Yes” write Γ table (default)

“No” summary only
RCID string A string representing the rigid body modes to in-

clude in the calculation. The string “123” rep-
resents the translational degrees of freedom only
(default). The value “123456” includes all 6. No
embedded spaces or commas.

Blockwise Y/N if No, no blockwise data is reported.

Table 10: MPF Parameters

Summary data from the calculation is written to the results file as described in Table 11.
In addition, unless write_table=no, data will be written to an external text file. The format
for the file is specified in the results file. It contains the block wise modal participation
factors, Γkij of equation 9. An example is provided in Figure 3.

The external text file is intended to be easily read by external programs such as the matlab
“load” command. It therefor has no header information. The data ordering is exactly the
same as the table written to the echo file (which contains that header information). Each
column is grouped first by block (in the order of the blocks in the genesis file), and then by
degree of freedom. Usually there are either 3 or 6 dofs per block entry. Each row corresponds
to a single mode.

The optional external text file (*.mpf) contains block-wise modal participation factors.
The data is presented in tabular format, separated by white space. Most data analysis
software tools can easily import this type of data for analysis and plotting (e.g., Microsoft
Excel, OpenOffice Calc, Python, MATLAB, Octave, etc.). The MPF file contains no header
information, so it is important to understand what each column and row represents. Each
row of data corresponds to a mode. Columns represent modal participation factors calculated
for each block and requested coordinate (controlled with “rcid”). The columns are grouped
first by block, and then by degree of freedom. Blocks are written out in the order they are
found in the genesis file (note: they are not sorted by Block ID or by the order they appear
in the input file). Hence, if the exodus file contains two blocks and rcid=123 (default), the
*.mpf file will contain six columns in the following order: Block1_x, Block1_y, Block1_z,
Block2_x, Block2_y, Block2_z. If rcid=123456, then six columns per block (x, y, z, Rx,
Ry, Rz) will be written out and there will be 12 columns.

Lumped or Consistent Mass: We always use the lumped mass for computation of the
geometric rigid body vectors used in the modal participation factor calculation. These
vectors are mass orthogonalized, and use of the consistent mass matrices for these efforts,
especially when there are MPCs can be quite complicated in parallel. There is a small error
introduced when the modes are computed using a consistent mass, and the rigid body vectors
use a lumped mass. Refining the mesh reduces the problem, but most accurate results are

UNCLASSIFIED - UNLIMITED RELEASE 35

Data Value Description
MPF ∑

i(Γij)2 Overall modej MPF
MPF-Bk

∑
i(Γkij)2 MPF for block k, mode j

MPF by RBMi
∑
j(Γij)2 MPF for direction i

Table 11: MPF Summary data. Each mode, vj, has contributions from each of these sum-
mary values.

SOLUTION
case eig

eigen nmodes=10
shift=-1e5

case out
mpf
blockwise=yes
RCID=123
write_table=yes

END

Figure 3: Modal Participation Factor (MPF) Example

obtained when the lumped mass is used (see section 2.2.3).

2.1.18 Modalfrf

Optionmodalfrf is used to perform a modal superposition-based frequency response anal-
ysis. In other words, the modalfrf provides an approximate solution to the Fourier transform
of the equations of motion, i.e. (

K + iωC − ω2M
)
u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier transform of
the applied force.

If the damping matrix is zero, or if it can be diagonalized by the undamped modes,
then the modalfrf solution uses the undamped modes for the superposition. Otherwise, for
general damping matrices C, complex modes are used for the superposition. In either case,
the modalfrf is performed in a multicase approach, where the modes (real or complex) are
computed in a first case, and then the modalfrf is computed in a subsequent case.

Modal damping can be applied regardless of whether the modes are real or complex-

36

valued.5 However, proportional damping is currently only available when the modes are
real-valued. For more details we refer to the section on damping 2.36.

2.1.18.1 ModalFrf with Real-valued Modes In the case where the undamped real
modes are used for the superposition, two options are available for the modalfrf solution:
the modal displacement method, and the modal acceleration method. In the case when
complex modes are used, only the modal displacement method is available. In both the modal
displacement and modal acceleration methods, the approximate solution is found by linear
modal superposition. Once the modes have been computed, there is little cost in computation
of the frequency response. The solution does suffer from modal truncation of course, but
in the case of the modal acceleration method a static correction term partially accounts for
the truncated high frequency terms. Thus, in general that method is more accurate than
the modal displacement method. The most accurate, but also the most computationally
expensive approach is the directfrf method described in section 2.1.7. The qmodalfrf
solution (2.1.24) is an even faster modal method, for solutions not requiring a large amount
of output.

For real modes using the modal displacement method, the relation used for modal fre-
quency response is given below.

uk(ω) =
∑
j

φjkφjmfm(ω)
ω2
j − ω2 + 2iγjωjω

Here uk is the Fourier component of displacement at degree of freedom k, φjk is the eigenvec-
tor of mode i at dof k, and ωj and γj represent the eigenfrequency and associated fractional
modal damping respectively. In the case of complex modes, the equations need to be lin-
earized and are more complex. We refer to that section of the theory manual 1.12.

For the modal acceleration method, the procedure for computing the modal frequency
response is more complicated. The response is split into the rigid body contributions, and
the flexible contributions. The number of global rigid body modes must be specified in the
input file. For details on the theory, we refer to section 1.8 of the theory manual.

5 One can use the “eigen” or the “qevp” solution methods.

UNCLASSIFIED - UNLIMITED RELEASE 37

The modal acceleration method is typically much more accurate
at finding the zeros of a function, but only slightly more accurate
in finding the poles (or peaks) of the response. The cost is
an additional factor and solve. It can be used on floating
structures, but the additional factor involves only the stiffness
terms (which are singular) and has no mass terms to stabilize
the solution. Thus, it may be much more difficult to perform
that solve than the other solves involved in the eigen analysis.
In eigen analysis we recommend a negative shift for floating
structures to remove the singularity associated with rigid body
modes. No such approach is possible if you are using the modal
acceleration method. Thus, significant “tweaking” of the FETI
parameters may be required to accurately determine the global
rigid body modes required for success of this method.

The force function must be explicitly specified in the load section, and MUST have a “func-
tion” definition. Note that the force input provides the real part of the force at a given
frequency, i.e. it is a function of frequency, not of time.

The following table gives the parameters needed for modalfrf section.
Parameter Argument
nmodes Integer

usemodalaccel -
nrbms Integer
complex yes/no
lfcutoff Real

The nmodes parameter controls the eigenanalysis (see section 2.1.10). The optional key-
word, usemodalaccel, is used to determine whether to use the modal displacement or
the modal acceleration method. If this keyword is specified, modal acceleration is used,
otherwise the modal displacement method is invoked. If usemodalaccel is used, then
the number of global rigid body modes must be specified using nrbms. The keyword
complex specifies to Sierra/SD if the modes to be used in the superposition are real or
complex. Note that it is possible that both types of modes could be stored in the database,
and thus the user would need to specify which set of modes to use in the superposition. The
lfcutoff keyword provides a low frequency cutoff to filter modes. It is typically used to
remove rigid body modes from the calculation. Modes with a frequency below this value are
not included in the calculation. By default, all modes are retained.

The parameters freq_step, freq_min, and freq_max are used to define the fre-

38

quencies for computing the shock response spectra. They are identified in the frequency
section along with an application region (see section 2.10). The range of the computed fre-
quency spectra is controlled by freq_min and freq_max, while freq_step controls
the resolution. The accuracy of the computed spectra is not dependent on the magnitude of
freq_step. This parameter only controls the quantity of output.

We note that, in addition to the output that is sent to the .frq file, output is also
written to the Exodus file during a modalfrf, provided that the keywords are specified in
the output section. If nothing is specified in the output section, then nothing is written
to the Exodus output files.

In the case of undamped modes, the following is a multicase example of how the modalfrf
could be specified.

SOLUTION
case eig

eigen nmodes=7 shift=-1e5
case out

modalfrf
END
FREQUENCY

freq_step=300
freq_min=100
freq_max=2500
nodeset=12
acceleration

END

2.1.18.2 ModalFrf with Complex Modes In the case when complex modes are used,
only the modal displacement method is available. In this case the qevp solution case is
used to compute the modes. There are currently three methods that can be used with the
qevp solution case, and they are the sa_eigen method, the anasazi method, and the
ceigen method. For more details, we refer to section 2.1.23.1. We note that in the case of
complex modes, modal superposition is currently implemented for the sa_eigen method
and the anasazi method. The ceigen method is currently not set up to work with a
subsequent modal superposition.

Also, when computing the complex modes in preparation for a modal superposition, we
recommend using the reorthogonalization flag. When turned on, this flag searches
for repeated modes and reorthogonalizes the eigenvectors of those modes. In many cases,
repeated modes coming out of the eigensolvers are linearly independent, but not orthogonal.
For more details, we refer to section 2.1.23.1.

In the case of complex modes, the following is an example.

UNCLASSIFIED - UNLIMITED RELEASE 39

SOLUTION
case qevp

qevp
method = sa_eigen
reorthogonalize = Y
nmodes=20
nmodes_acoustic = 5
nmodes_structural = 5

case out
modalfrf
complex = y

END
FREQUENCY

freq_step=300
freq_min=100
freq_max=2500
nodeset=12
acceleration

END

2.1.19 Modalranvib

Option modalranvib is used to perform a modal superposition-based random vibration
analysis in the frequency domain. The solution computes the root mean square (RMS)
outputs (including the von mises stress) for a given input random force function. The
resulting power spectral density functions may also be output for locations specified in the
“frequency” section. The forcing functions (one for each input) must be explicitly specified in
the ranload section (2.17), which MUST reference a “matrix-function” definition (see section
2.29).

The following table gives the solution parameters needed for modalranvib analy-
sis.

Parameter Argument Comment
nmodes Integer do not use in multicase
noSVD N/A selection of reduction method
lfcutoff Real to eliminate zero energy modes

TruncationMethod string “none”, “displacement” or “acceleration”
keepmodes Integer

CheckSMatrix true/false default is true

The nmodes parameter controls the eigenanalysis (see section 2.1.10). All keywords as-
sociated with eigen analysis are appropriate and available. It is recommended that the

40

eigenanalysis be performed as the first step of a multicase solution. If used in a multicase
analysis, “nmodes” should not be specified.

The optional keyword noSVD determines the method used to compute the RMS von
Mises stress output. If noSVD is specified, then the simpler method which does not use
a singular value decomposition is used. Additionally,that simpler method causes the second
and fourth moments associated with von Mises stress to be computed and to be written
to Exodus output. (The RMS von Mises stress and these two moments, along with the
appropriate material properties, can be used in an manner suggested in11 and discussed in12

to estimate fatigue life in broad-band random excitation.) However, this method provides
no information about the statistics of the stress. Only the RMS value and moments are
reported.

The optional keyword lfcutoff provides a low frequency cutoff for random vibration
processing. Usually, rigid body modes are not included in this type of calculation if RMS
stress is computed. The lfcutoff provides a frequency below which the modes are ignored.
The default for this value is 0.1 Hz. Thus, by default rigid body modes are not included in
random vibration analysis. A large negative value will include all the modes.

The optional keyword TruncationMethod provides control over selection of the
retained modes. By default modes are retained if they have any contribution to the stress. As
stresses are proportional to displacement, the default method is “DISPLACEMENT”. Rarely,
one may want to avoid all truncation (NONE) or truncate based on acceleration contributions
(ACCELERATION), which are much more heavily weighted to higher frequencies. Often
zero energy modes contribute to a bad truncation, and a preferred means of controlling the
truncation is to use the “lfcutoff” parameter and to ensure the integration does not go to
zero frequency.

The optional keyword keepmodes is a method of truncating modes. By default, its
value is nmodes. If a value is provided, the modes with the lowest modal activity will
be truncated until only keepmodes remain. Note that this is a much different trunca-
tion procedure than simply truncating the higher frequency modes. Modal truncation is
important because all of the operations compute responses that require order N2 operations.
Even if keepmodes is not entered, modes with modal activity less than 1 millionth of
the highest active mode will be truncated.

The optional keyword CheckSMatrix can be used to turn off evaluation of the
correlation matrix, S. This matrix is generated at each frequency, and must be positive
semidefinite. A correlation matrix that is not positive semidefinite results in negative PSD
results, which are not physically meaningful. Note, matrix evaluations are only enabled if
PSD output is requested.

The parameters freq_step, freq_min, and freq_max are used to define the
frequencies for computing the random vibration spectra. They are identified in the fre-
quency section along with an optional application region (see section 2.10). The range
of the computed frequency spectra is controlled by freq_min and freq_max, while

UNCLASSIFIED - UNLIMITED RELEASE 41

freq_step controls the resolution. The accuracy of the computed spectra does depend
on the magnitude of freq_step since it is used in the frequency domain integration.

In random vibration, the frequency block serves two purposes. First, it is used for
the integration information for the entire model. Thus Γqq for the referenced papers13 is
integrated over frequency and used for all output. In addition, if an output region is speci-
fied in the frequency block, output acceleration and displacement power spectra may be
computed for the given region at the required frequency points. At this time, only “acceler-
ation” and/or “displacement” may be specified in the frequency block for random vibration
analysis. This output is described in more detail below.

Random vibration analysis is a little trickier than most input. A number of blocks must
be specified.

1. The solution block must have the required input for eigen analysis, and the keyword
modalranvib.

2. The RanLoads block contains a definition of the spectral loading input matrix
and the loadings. Note that the input, SFF is separated into frequency and spatial
components. The spatial component is specified here using load keywords. See section
2.17. The spectral component is referred to here, but details are provided in the matrix-
function section.

3. The matrix-function section contains the spectral information on the loading.
It references functions for the details of the load. The real and imaginary function
identifiers for this input are specified here (2.29).

4. There must be a function definition for each referenced spectral function. Functions
of time or frequency are further described in section 2.28.

5. There must be a frequency block that is used for integration and optionally also
for output of displacement and acceleration output. See section 2.10.

6. As an undamped system is singular, some type ofDamping block information needs
to be provided. Modal damping terms are required.6 See section 2.36.

7. Boundary conditions are supplied in the usual way, but the standard loads block
is replaced by the input in the ranloads section. The loads block will be quietly ignored
in random vibration analysis.

8. The outputs and echo sections will require the keyword vrms for output of RMS
von mises stress. If the stress keyword is also found, then the natural stresses for solid
elements will be output.7 Quantities output are listed in Table 12.

6Proportional damping, such as is applied with the ALPHA and BETA terms, will NOT work in modal-
ranvib.

7 The natural stresses are output in the following order: σxx, σyy, σzz, σyz, σxz, σxy. These stresses are
linear functions of the displacement.

42

All other input should remain unchanged.

Keyword Output Variable Description
Vrms vrms Root Mean Squared Von Mises Stress

D1...D5 Von Mises Stress moments. Details in 14.
Xrms X component of RMS displacement
Yrms Y component of RMS displacement
Zrms Z component of RMS displacement
Axrms X component of RMS acceleration
Ayrms Y component of RMS acceleration
Azrms Z component of RMS acceleration

Table 12: ModalRanVib Output to Exodus File. The stress moments are not computed nor
output if “noSVD” is selected. The RMS values of displacements and acceleration are not
truly vectors.

2.1.19.1 Power Spectral Densities. One output from the random vibration analysis
is a power spectral density or PSD (for displacement or acceleration). The power spectral
density is a measure of the output content over a frequency band, and usually measured in
units of cm2/Hz or some similar unit. Acceleration PSDs are often measured in units of
g2/Hz.8

Like the input cross spectral forces, the output quantities are Hermitian, with 9 indepen-
dent quantities at each frequency, at each output node for each type of output. Details of
how these quantities are transformed in alternate coordinate systems are outlined in section
1.8 of the theory manual. The matrix quantities are diagrammed below. Quantities are
output in the order Axx, Ayy, Azz, Azx, Azy, Axy, Azxi, Azyi, Axyi. Axx Axy + iAxyi Axz + iAxzi

Axy − iAxyi Ayy Ayz + iAyzi
Axz − iAxzi Ayz − iAyzi Azz

Because the inputs are specified in terms of force cross-correlation functions, the standard

procedure for applying loads often involves application of a large concentrated mass at the
input location. The force may then be applied to the mass and the acceleration determined
from a = f/m, where we assume that m is much larger than the mass of the remainder of
the structure. Some confusion can arise in the scaling of the force.

The output PSD for acceleration is defined as follows.

Gij = H†kiSklHlj (10)
〈aiaj〉 = H†ki〈fkfl〉Hlj (11)

8 Power spectral density output is requested in the frequency block. A collection of nodes is
indicated and the displacement or acceleration keyword is entered. PSDs of displacement or acceleration are
available.

UNCLASSIFIED - UNLIMITED RELEASE 43

where Hlj is the transfer function giving aj/fl.

Consider a single input, i.e. k = l, and with fk = mkak.

Gij = H†ki〈mkakakmk〉Hlj (12)
= (m2

k)Hki〈akak〉Hkj (13)

Thus, the acceleration PSD must be multiplied by the square of the mass to get the force
PSD. Note that Sierra/SD uses the scale factor in the spatial force distribution, so the
scale factor in Sierra/SD should be mk.

2.1.20 Modalshock

The modalshock solution method is used to perform a modal superposition-based im-
plicit transient analysis followed by computation of the shock response spectra for the de-
grees of freedom in a specified node set. The following table gives the parameters needed for
modalshock.

Parameter Argument
nmodes Integer

time_step Real
nsteps Integer
nskip Integer

srs_damp Real

The nmodes parameter controls the modal solution described in section 2.1.10. The time
stepping parameters time_step, nsteps and nskip are described in the transient
section (2.1.32).

The parameters freq_step, freq_min, and freq_max are used to define the fre-
quencies for computing the shock response spectra. They are identified in the frequency
section along with an application region (see section 2.10). The range of the computed fre-
quency spectra is controlled by freq_min and freq_max, while freq_step controls
the resolution. The accuracy of the computed spectra is not dependent on the magnitude of
freq_step. This parameter only controls the quantity of output.

The optional parameter srs_damp is a damping constant used for the shock response
spectra calculation. Its default value is 0.03. Damping for the model is defined in section
2.36.

44

2.1.21 Modaltransient

Option modaltransient is used to perform a modal superposition-based implicit tran-
sient analysis. The following table gives the parameters needed for modaltransient.
Damping for the model is defined in section 2.36.

Parameter Argument default
time_step Real none
nsteps Integer none
start_time Real 0
nskip Integer 1
load Integer sec 2.15
lfcutoff Real none
flush Integer 50

The parameters time_step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The optional start_time
allows the analyst to define the start time of the transient simulation. It defaults to zero. The
optional parameter nskip controls how many integration steps to take between outputting
results. (It defaults to 1, which is equivalent to outputting all time steps). Time dependent
loadings are applied by referencing the appropriate load and function sections (see 2.15
and 2.28).

The optional keyword lfcutoff provides a low frequency cutoff for processing the modes.
The analyst may or may not wish to include rigid body modes in this type of calculation.
The lfcutoff provides a frequency below which the modes are ignored in the modal super-
position. The default behavior is to include all of the modes - if this parameter is present,
modes below the cutoff will be ignored. A large negative value will include all the modes.

Modal transient should normally be executed as a later step of a multicase solution, where
previous steps computed the eigenvalue response. However, for compatibility with earlier
formats, modaltransient can be called as a single step solution (see section 2.1.10). In
that case the following eigen value parameters are also required. Note that in a single step
solution (with no case structure), no load keyword is required, but a loads section must
exist in the file (see section 2.14).

Parameter Argument
nmodes Integer
shift Real

UNCLASSIFIED - UNLIMITED RELEASE 45

The parallel solution of modal transient may be slower than ex-
pected because while the eigen solution parallelizes very well,
there is not enough computation to parallelize the modal cal-
culation. In addition, Sierra/SD computes the displacements
at all locations in the model before subsetting to those nodes in
the history file.
If output is only required at a few locations, you may want to
consider a qmodal transient solution (see 2.1.22) or a Matlab in-
tegration. Integration in Matlab will require the eigenvalues and
vectors from the history file, and the modal generalized forces.
These forces are written to ‘ModalFv.m’.

Modaltransient solutions do support restart. The format for a restart in modaltran-
sient is given in detail in section 2.2.1. We note that one can restart both in the eigen
part of the analysis, the modaltransient part, or both. In the latter case, Sierra/SD
would read in the modes from the modal restart file, as well as the time history data from
any previous transient restart files (direct or modal), and would then continue stepping in
time. Modal transient analyses may be restarted from some other transient integrators. See
Table 23.

An example of restart with themodaltransient solution is given below. In this case,
the eigen solution is restarted prior to the modaltransient solution. The eigensolution would
proceed as follows

SOLUTION
case ’eigen’

eigen
nmodes 10
restart=write

END

and, subsequently, the eigen restart and modal transient would look follows

SOLUTION
case ’eigen’

eigen
nmodes 20
restart=read

case ’modaltrans’
modaltransient
nsteps 100
time_step 1.0e-3
restart=write

END

46

We note that write option in themodaltransient case in the previous example would
be needed to restart the modaltransient with additional subsequent time steps. For example,
one could then do the following

SOLUTION
case ’eigen’

eigen
nmodes 20
restart=read

case ’modaltrans’
modaltransient
nsteps 100
time_step 1.0e-3
restart=write

case ’modaltrans’
modaltransient
nsteps 200
time_step 1.0e-3
restart=read

END

2.1.22 QModaltransient

Option qmodaltransient is used to perform a fast modal superposition-based implicit
transient analysis on a subset of the mesh. Instead of performing a full solution and then
reducing the data to a subset, as in modaltransient, displacements are only calculated
for the nodes in the history file. The parameters are identical to those specified for the
Modal Transient solution and are discussed in section 2.1.21. Of course, a history section is
also required or no output will be written.

2.1.22.1 Limitations:

1. The entire reduced model will fit in memory. The reduced model includes the eigen-
vectors of all desired modes on all the required output locations. Obviously, it also
includes either the reduced mass and stiffness matrices, or the eigenvalues from which
such can be constructed.9

2. Limited output is required. In particular, we don’t know anything about the elements
any more, so we could not compute stresses if they are not available as stress modes,
Φσ. Applied force is also unavailable.

9Note that the reduced model could be either a pure modal model, a Craig Bampton model or some other
such system.

UNCLASSIFIED - UNLIMITED RELEASE 47

3. The loading is simple, i.e. there are no follower loads or user functions that depend on
spatial data.

4. If a qmodal method is run and the files qDisp and qForce are created, ignore these
files.

2.1.22.2 Example: The following example demonstrates the required components of a
qmodaltransient input.

SOLUTION
case eig

eigen nmodes=10
shift=-1e5

case out
qmodaltransient
time_step=0.001
nsteps=20
load=1

END

HISTORY
block 101
disp

END

We note that, unlike transient and modaltransient, restarts are not currently
supported for qmodaltransient.

2.1.23 QEVP

2.1.23.1 Quadratic EigenValue Methods Comparison The quadratic eigenvalue
problem is defined as, (

K +Dλ+Mλ2
)
u = 0 (14)

The solution of the quadratic eigenvalue problem (eq. 14), has applications in a variety
of physics solutions including coupled structural acoustics, general eigenvalue systems with
damping, and gyroscopic systems for rotating structures. Various methods have been de-
veloped to address the solution to these problems. The solution to the problem is difficult,
and knowledge of the types of systems encountered can help significantly in addressing the
robustness of each of the methods. The methods are listed and described in the following
paragraphs. Table 13 lists recommended procedures for different problem sets.

48

ANASAZI: We have recently introduced the Anasazi method. This can be used to address
two problem areas, 1) the coupled structural acoustics problem, and 2) gyroscopic sys-
tems from rotating frames. Currently it requires that both the mass and the stiffness
matrix be nonsingular. The Anasazi method is an ongoing development effort. Pre-
vious versions of Sierra/SD used the solution case qevp with no method keyword to
denote the Anasazi method, and it is the default method to keep consistent with this
syntax.
A couple of the parameters for the Anasazi solver for quadratic eigenvalue problems
are described in the Table 8. Here shifts are not supported, and a warning message
may be avoided by setting shift to zero. Restarts are not supported either; set
annumrestarts to 1. Restarts make the capability easier to use. Without restarts the
user is required to set the number of iterations, annumblocks, to be sufficiently large.
The way that the algorithm works is to compute all of the modes, and then compare a
kind of relative residual to aneigen_tol. If the residuals are large, the modes are not
returned to the user. It can be helpful to use a larger value of aneigen_tol than the
default, say 106 or 1010. In this situation, it is helpful to set anverbosity to a large
value, say 10. And then examine other diagnostic information there to ascertain the
accuracy of the modes.

CEIGEN: The Ceigen method uses methods in ARPACK to solve the quadratic eigen-
value problem. Of methods in Sierra/SD , it is the oldest, and probably the least
robust.

SA_EIGEN: The SA_eigen method solves a coupled structural acoustics problem by
solving a linear, uncoupled eigenproblem on each of the domains, and using them
as a basis to reduce the coupled equations to a dense system. The dense system is
solved using LAPACK routines. The method is only applicable to structural/acoustic
systems. It is fairly robust, but modal truncation can introduce significant errors.
Some solutions can fail (or convergence may be very slow) because the decomposition
tools know nothing about the two domains.

PROJECTION_EIGEN: Theprojection_eigenmethod solves the quadratic eigen-
value problem by projecting the problem into a subspace corresponding to the real-
valued modes. This smaller subspace is constructed by neglecting the damping matrix,
symmetrizing the stiffness matrix, and solving a standard eigenvalue problem of the
form

Ku = λMu (15)

This smaller problem is then used as a basis for solving the original quadratic eigenvalue
problem, which takes the form

Ku+ λCu+ λ2Mu = 0 (16)

The original quadratic eigenvalue problem is then pre and post multiplied by the eigen-
vectors obtained from the subspace eigenvalue problem. This results in a very small
quadratic eigenvalue problem which is then solved with a LAPACK method. Finally,

UNCLASSIFIED - UNLIMITED RELEASE 49

the modes from the reduced space are projected back out to the space corresponding
to the original quadratic eigenvalue problem.
As with the sa_eigen method, truncation error is a concern with the projec-
tion_eigen method. The more modes one takes, the smaller the truncation error.

Problem Ceigen SA_eigen Anasazi Projection_eigen
Damped Systems Good OK Fails Good
structural acoustics Fails Good Good Good
Rotational systems N/A N/A Good Good

Damped str/acoustics Fails OK Fails Good

Table 13: Comparison of Quadratic EigenProblem Methods

The various QEVP methods can be chosen using the keyword "method" followed by the
name of the method (Anasazi, ceigen, sa_eigen, Projection_eigen). Below is a more detailed
description of each QEVP method, their parameters, and examples of how to use them.

2.1.23.2 Anasazi The Anasazi method is one of a family of methods for addressing the
quadratic eigenvalue problem. See section 2.1.23.1 for a comparison of these methods. The
quadratic eigenvalue problem is defined as,(

K +Dλ+Mλ2
)
u = 0 (17)

This method uses tools in Trilinos/Anasazi to develop a solution of this highly nonlinear
problem. As currently implemented, the Anasazi method applies only to systems with a
nonsingular mass and stiffness matrix and where the damping matrix, C, is asymmetric.
Parameters for input are described in Table 14. An example is given below.

Table 14: Parameters for QEVP Anasazi Solutions

Parameter Argument Default Comment
nmodes Integer 10 number of modes
shift Real 0 ignored

reorthogonalize Y/N “Y” Reorthogonalize vectors
check_diagonal Y/N “Y” Check that vectors

diagonalize linearized system
ANverbosity Integer 17 Anasazi verbosity
ANblocksize Integer 1 Anasazi Block Size
ANeigen_tol Real 1.0e-16 Eigen tolerance

SOLUTION
case qevp

qevp

50

method=anasazi
nmodes=14
anverbosity=27

END

2.1.23.3 Ceigen The “qevp” solution with “method=ceigen” is used to select complex
eigen analysis using the ARPACK package. This computes the solution to the quadratic
eigenvalue problem, (

K +Dλ+Mλ2
)
u = 0 (18)

Note that two other solution methods may also be used to evaluate the quadratic eigenvalue
problem. Each of these methods has its strengths and weaknesses. A comparison of these
methods is provided in section 2.1.23.1.

The following table gives the parameters needed for complex eigen analysis.

Parameter Argument Default
nmodes Integer 100
viscofreq Real 1e-6

The nmodes keyword indicates the number of modes to compute in the quadratic eigen-
value analysis. These modes are computed (and reported) as complex conjugate pairs.

The optional viscofreq keyword indicates the frequency at which the damping prop-
erties of visco elastic materials will be computed. It must be non-negative. The viscofreq
parameter can be very confusing. In particular, visco elastic materials typically have high
damping at lower frequencies, and lower damping at high frequencies. The viscofreq
parameter sets a frequency from which we estimate all of the visco elastic damping. Thus,
if viscofreq is small, the damping is large. In particular, if viscofreq is below the
glass transition frequency, then damping appropriate to the low frequency modes will be
used. This high value of damping is applied to the entire spectrum. It is generally better to
over-estimate viscofreq than to underestimate it.

The reason for this difficulty is that even linear visco elastic materials generate a more
complex equation than that shown in equation 18. With a single term in the Prony series,
the equation of motion for a damped visco elastic structure can be written in the frequency
domain. (

K +D
s

s+ ωg
+Ms2

)
u = f(s) (19)

Where s is the Laplace transform variable and ωg = 1/τ is the reciprocal of the relaxation
constant. Clearly this system is not a simple quadratic in s. Effectively, viscofreq ap-
proximates this system with the linearized system below.

UNCLASSIFIED - UNLIMITED RELEASE 51

Table 15: Ceigen Tests

Name Description
ceig stiffness proportional damping
ceig_visco visco elastic damping
ceig_dash dashpot damping
steel_in_foam complex mixed materials

(
K +D

s

2π · viscofreq + ωg
+Ms2

)
u = f(s) (20)

Computation of quadratic eigenmodes is much more difficult than real eigen analysis.
The system of equations is more difficult, and more “tricks” must be used to resolve issues
that are generated. Even the post processing can be complicated. Like real eigen analysis,
one must request displacement output in the “output” section (see 2.8.6). Now the output
file contains 12 separate fields (six real and six imaginary) for the complex results. Few post
processing tools know what to do with these results. More details are provided in section
1.10 of the theory manual.

Because of the difficulties with complex eigen analysis, it is important to understand the
problems for which we have evaluated and tested it. The tests in the test suite are listed in
Table 15.

2.1.23.4 SA_eigen The “qevp” procedure with method SA_eigen provides a means
of computing the modal response of a coupled structural acoustic system, using a modal
truncation basis. The quadratic eigenvalue problem describing this system can be written
as follows. ([

Ks 0
0 Ka

]
+ λ

[
Cs L
−ρaLT Ca

]
+ λ2

[
Ms 0
0 Ma

]) [
φs
φa

]
= 0 (21)

Here the subscripts refer to structural or acoustic domains, ρa is the density of the fluid and
L is a coupling matrix. Note that for this formulation, φa represents the acoustic velocity
potential, which relates to the time derivative of the acoustic pressure, φa = ∇u̇a. See section
1.11 in the theory manual for more details.

The SA_eigen method solves this system by solving for the uncoupled eigen modes in
the two domains, using them as a basis to reduce the coupled equations to a dense system,
and solving the dense system. Thus, it uses a modal reduction technique similar to the
Craig-Bampton methods (section 2.1.5) to generate a dense system of equations that are
solved and results propagated back to the physical space. More details are available in the
theory manual.

52

SOLUTION
case saeig

qevp
method=sa_eigen
nmodes=20
nmodes_acoustic=50
nmodes_structure=26
acoustic_lfcutoff=-1
structural_lfcutoff=-1
sort method = frequency

END

Figure 4: SA_Eigen Example

Parameters of the analysis are provided in Table 16, and an example is provided in Figure
4.

Boundary conditions are applied exactly as for the generalized eigenvalue problem. Ex-
terior, non-reflecting boundary conditions may be applied, but modal convergence is poorer.
Loads are irrelevant. Output is now complex, just as for the ceig case (2.1.23.3).

Limitations: This is a modal superposition method. The QEVP method is a more complete
(but less robust) method which does not depend on modal truncation. The SA_eigen
method works reasonably well for a variety of structural acoustic environments. Damp-
ing may be provided, but does tend to slow convergence. The method also depends
on the solution to separate structural and acoustic subregion eigen problems. These
solutions are not as robust as full system eigen analysis. Please see the notes in the
verification manual for convergence details. Table 17 summarizes the status of this
procedure.

Low Frequency Cutoff: The parameters acoustic_lfcutoff and structural_lfcutoff remove
low frequency modes before initiating the QEVP. This will reduce the numer of modes
(nmodes_acoustic and nmodes_structure) in the analysis. Negative cutoff frequencies
are allowed.

Specialized Output: There are a few items that are output specifically for the sa_eigen
procedures that can be very helpful in assessing the solutions.

StructuralFraction It is useful to know which modes participate in which regions.
This is computed as follows.
Let φ be the right eigenvector computed on the reduced space. We subset φ into
its structural and acoustic components. i.e.,

φ =
[
φs
φa

]

UNCLASSIFIED - UNLIMITED RELEASE 53

Parameter Args Description
nmodes int Number of requested eigen modes

nmodes_acoustic int Number of free-free acoustic modes in the re-
duction. Defaults to 2·(nmodes).

nmodes_structure int Number of free-free structural modes in the re-
duction. Defaults to 2·(nmodes).

acoustic_lfcutoff Real Low frequency cutoff to filter acoustic modes.
By default all modes are retained

structural_lfcutoff Real Low frequency cutoff to filter structural modes.
By default all modes are retained.
Used to eliminate negative modes

shift Real Eigen shift used in computation of the subre-
gion modes. See 2.1.10.

sort method string magnitude: complex magnitude of λ
frequency: Sort by frequency and then damp-
ing.
damping: Sort by damping and then fre-
quency.
truefreq: Sort by frequency... avoiding zero
energy round off.
none:

linearization int 1 A = [0 I; -K -C]; B = [I 0; 0 M]
2 A = [-K 0; 0 M]; B = [C M; M 0];
4 A = [0 -K; M 0]; B = [M C; 0 M];
These follow the linearizations in Tisseur

reorthogonalize string no: no reorthogonalization
yes: reorthogonalize all modes

check_diagonal string no: no check for orthogonalization
yes: check only redundant modes
all: check all modes

Table 16: SA_Eigen Parameters

54

Analytic Verification Tested Parallel User
Reference Section Test Test

15 8.6 Y Y some

Table 17: Verification Summary for SA_Eigen

We compute,

Fstructure = φ†s · φs
φ†s · φs + φ†a · φa

(22)

where φ† represents the transpose and complex conjugate of φ. Note that these
products are computed in the reduced space which has coordinates associated
with each structural or acoustic eigen mode. In the reduced space, the mass
matrix is identity, and the vector product, φ† · φ represents an energy norm.

AcousticFraction The acoustic fraction is the analogue of the structural fraction
(eq. 22) applied the acoustic domain. It represents the portion of the system
level complex eigenmode that is associated with the acoustic domain.

ErrorNorm We define a normalized modal energy residual.

En
resid = |φ

†(k + λc+ λ2M)φ|
φ†Kφ

(23)

Where φ and λ are the estimates of the eigenpairs computed using the modal
approximation technique. The matrices, k, c and m are the fully assembled stiff-
ness, coupling and mass matrices. This residual norm is a measure of the relative
accuracy of the eigenvalue solution. It is available in both the text results files and
the output Exodus files, and should be consulted to determine the convergence.

2.1.23.5 Projection_eigen The Projection_Eigen method is the most robust of all
the solvers available for quadratic eigenvalue problems. Parameters of the Projection_Eigen
solver are provided in Table 18. These parameters are identical to those for the sa_eigen
method.

2.1.24 QModalfrf

Option qmodalfrf is used to perform a fast modal frf analysis on a subset of the mesh.
The parameters are identical to those specified for the Modal FRF solution and are discussed
in section 2.1.18. The only exception is that the option usemodalaccel has no affect on
a qmodalfrf solution; it is always displacement based. A history section is also required
or no output will be written. A qmodalfrf solutions has the same limitations as the
qmodaltransient solution discussed in the previous section.

The example in section 2.1.18 applies to the qmodalfrf method. Simply replace the
modalfrf keyword in the solution block with qmodalfrf.

UNCLASSIFIED - UNLIMITED RELEASE 55

Parameter Args Description
nmodes int Number of requested eigen modes
shift Real Eigen shift used in computation of the subre-

gion modes. See 2.1.10.
reorthogonalize string no: no reorthogonalization

yes: reorthogonalize all modes

check_diagonal string no: no check for orthogonalization
yes: check only redundant modes
all: check all modes

sort method string magnitude: complex magnitude of λ
frequency: Sort by frequency and then damp-
ing.
damping: Sort by damping and then fre-
quency.
truefreq: Sort by frequency... avoiding zero
energy round off.
none:

Table 18: Projection_Eigen Parameters

2.1.25 NLStatics

TheNLstatics keyword is required if a nonlinear static solution is needed, i.e. the solution
to the system of equations [K]{u} = {f}, where K is now a function of u. The following
table gives the parameters needed for nonlinear static analysis.

Parameter Argument Default
max_newton_iterations Integer 100

tolerance Real 1e-6
num_newton_load_steps Integer 1

update_tangent Integer 101

Four parameters control the conventional Newton method. Newton methods are nonlinear
solution algorithms employed to solve the residual force equations. The residual vector, r,
is the difference between the internal force vector, p, and the external force vector, f . The
strategy drives the residual to zero.

r = p− f (24)

The internal force vector is a function of the structural displacements (and possibly veloc-
ities). External forces can also be a function of the structural displacements in the case of
follower loads such as surface pressure loads.

The tolerance provides control over the completion of the newton iteration. Once

56

the change in the L2 norm of displacement decreases below tolerance, the loop completes
successfully. If the iteration count exceeds max_newton_iterations, the Newton
loop is considered to have failed.

The num_newton_load_steps keyword controls the number of load steps used
to incrementally step up to the final equilibrium position. Large loads may cause the Newton
algorithm to diverge. If this occurs, increase the number of load steps applied. Displacements
will be output after each load step which may be animated similar to transient dynamics
simulations.

The update_tangent keyword controls how often the tangent stiffness matrix is
rebuilt during the Newton iterations. The default is set to update the tangent stiffness
matrix at the beginning of a load step only. Setting update_tangent to 1 is equivalent
to using a full-Newton algorithm where the tangent stiffness matrix is rebuilt after each
Newton iteration. For highly nonlinear (difficult) problems, this option may be optimal, but
for most problems the extra cost incurred in recomputation and refactoring of the tangent
stiffness matrix should be amortized over several solves. Note, for this option to improve
Newtons method, the element types in the model have to have the tangent stiffness method
implemented.

An example SOLUTION section is shown below.

Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split load into 10 increments
update_tangent = 1 // full-newton algorithm

end

2.1.26 NLTransient

The NLtransient solution method is used to perform a direct implicit nonlinear
transient analysis. The following table gives the parameters needed for nonlinear transient
analysis.

The nonlinear transient analysis is performed according to methods described in Hughes.
A projector, corrector step is used. Note that for a linear system the NLtransient analysis
will require two solves per time step.

UNCLASSIFIED - UNLIMITED RELEASE 57

Parameter Argument Default
time_step Real -
nsteps Integer -
nskip Integer 1

start_time Real 0
flush Integer 50
rho Real Newmark beta

max_newton_iterations Integer 100
tolerance Real 1e-6

update_tangent Integer 101

The time step control parameters, time_step, nsteps, nskip, start_time, and
flush are described in the transient section above, section 2.1.32. The parameter rho is
the same as described in the previous section. We note that, as in the case of linear transient
analysis, multiple time steps can be specified in nonlinear transient analysis. The syntax for
this is the same as described in the section on linear transient analysis.

Four parameters control the conventional Newton method used to solve the residual force
equations. The tolerance provides control over the completion of the newton iteration.
Once the change in the L2 norm of acceleration decreases below tolerance, the loop com-
pletes successfully. If the iteration count in a given time step exceeds
max_newton_iterations, the Newton loop is considered to have failed. Thus, note
that max_newton_iterations is not the limit for the total number of Newton iter-
ations, but the limit on the number of iterations per time step.

In a nonlinear statics analysis, load stepping can be used to help the convergence of the
Newton loop by cutting the total load into a series of incremental steps. This is controlled
with the num_newton_load_steps keyword. However, in nonlinear transient anal-
ysis, load stepping makes no sense since the dynamic response of a structure subjected to a
total load is different than if it were subjected to a series of incremental loads. In effect, the
load stepping is replaced by time stepping in the case of nonlinear transient analysis. Thus,
the keyword num_newton_load_steps is inactive for nonlinear transient analysis.

For nonlinear transient problems, if Newtons method diverges, either the tangent stiffness
matrix has to be updated more often (see update_tangent) or the time-step should
be decreased.

The update_tangent controls how often the dynamic tangent stiffness matrix is
rebuilt during the Newton iterations. The default is set to 101, and thus unless a given
Newton loop takes more than 101 iterations, the tangent matrix will not be updated by
default. Setting update_tangent to 1 is equivalent to using a full-Newton algorithm
where the dynamic tangent stiffness matrix is rebuilt after each Newton iteration. Note
that currently there is no option for forcing a tangent update at the beginning of each time
step, unless the update_tangent keyword is set to exactly the number of Newton

58

iterations taken per time step. For highly nonlinear problems, some control of this option is
recommended. Note, for this option to improve Newtons method, the element types in the
model have to have the dynamic tangent stiffness method implemented.

2.1.27 Receive_Sierra_Data

Coupling of Sierra/SD Through The Sierra Framework

Calculations in Sierra codes such as Sierra/SM may be transferred to Sierra/SD. This pro-
vides the ability to compute very nonlinear responses in an explicit code, and follow that by
a mildly nonlinear, implicit linear or modal calculation in Sierra/SD.

A solution method namedReceive_Sierra_Data facilitates the transfer of data, which
may occur either through the sierra framework or an Exodus input file written from the sierra
application. Table 19 gives a summary of the available parameters for this method.

Table 19: Receive_Sierra_Data Parameters

Parameter Description
read_from_file read data from a file instead of an in-core transfer
equilibrium See description below

no_geom_stiff See description below
transfer iterate for Gemini coupling (see description below)

The method used for the transfer depends on the executable built. As currently config-
ured, the standard Sierra/SD executable must use the file transfer. Specially linked executa-
bles, such as eagle can be used for the in-core transfer of data. These executables contain
linkage for Sierra/SM in addition to Sierra/SD.

The Receive_Sierra_Data solution makes sense only in the context of a multi-case so-
lution. An example is given below, where preload data is received from a file, and a modal
(eigen) solution is computed after receiving the preload data.

SOLUTION
case xfer

receive_sierra_data
read_from_file
equilibrium
no_geom_stiff

case eig
eigen nmodes=40 shift=-3e6

END

UNCLASSIFIED - UNLIMITED RELEASE 59

When the transfer is to occur via an exodus file, the option read_from_file should
be specified. This tells Sierra/SD to read the transfer data off of the incoming exodus file
(as specified by the geometry_file specification in the file section (see section 2.11)),
rather than expecting data from a transfer. To be meaningful, that file will contain data
from some previous analysis.

The receive_time_step parameter may be applied only to a file transfer. It con-
trols which time step in the input exodus file contains the data. By default, the data
corresponding to the first time step is read in by Sierra/SD.

The equilibrium and no_geom_stiff keywords have complementary uses. The
equilibrium keyword is used when the data coming into Sierra/SD (either through a file
or a transfer) is in static equilibrium. When this parameter is used, no force terms will be
added to the right hand side in Sierra/SD. The only effect of the preload in such a case would
be to change the stiffness matrix through the contribution of a geometric stiffness matrix.
When the equilibrium keyword is not used, the preload has two effects; it contributes
a geometric stiffness matrix, and it also contributes a forcing term. Note that for a modal
analysis, the equilibrium keyword will have no effect, since it only effects the right hand
side term.

The no_geom_stiff keyword can be used to ignore the contribution of the geometric
stiffness matrix when data is being read into Sierra/SD (either through a file or a transfer).
This can be useful for debugging purposes, if for example it is suspected that the geometric
stiffness matrix is contributing to negative eigenvalues. Otherwise, this parameter should be
avoided, since it changes the stiffness of the system.

The transfer iterate keywords are used in coupling of Sierra/SD with the fluids code
Gemini. We don’t go into details here, but instead point the reader to the Gemini Interface
Users Guide. That guide can be found in the Sierra/SD HowTo document, which can be
found on the Sierra/SD website.

2.1.28 Statics

The statics keyword is required if a static solution is needed, i.e. the solution to the system
of equations [K]{u} = {f}. An example SOLUTION section is shown below.

Solution
title ’Example of a statics solution’
statics

end

60

2.1.29 Subdomain_Eigen

The subdomain_eigen keyword is used to obtain the eigenvalues and eigenvectors of
the mass and stiffness matrix of the model on a subdomain basis. This is useful mainly
for debugging distributed solutions. It is obviously decomposition dependent, and has no
physical meaning. The parameters are listed below.

Parameter Argument Default
nmodes Integer 10
shift Real 0

Many domain decomposition tools (such as FETI-DP) depend on non-singular subdomain
stiffness matrices. Running subdomain_eigen on these systems reveals the condition of the
system that is to be solved. For FETI-DP, the system of interest is the subdomain defined
with the corner nodes clamped. This can be determined using the following procedure.

1. Set the FETI parameter prt_debug=3 in the FETI section (see section 2.4.3).
Running a standard analysis (i.e. statics, transient analysis or eigen) will output the
“corners.data” file. This file should normally be written properly even if the analysis
fails.

2. Copy the file to a new name, and modify it to contain only the global node ids. This
is the first column of the file.

3. Use the node_list_file option to clamp the corner nodes in the file (see section
2.13.3).

4. Run Sierra/SD using the subdomain_eigen option. Ask for 14 modes or so.
A very small first mode indicates a singular system for which our corner selection
algorithm has not properly constrained the subdomain.

2.1.30 Tangent

The tangent solution step is only relevant as part of a multicase solution (see paragraph
2.1.1). It forces an update of the tangent stiffness matrix. It is typically used following a
nonlinear solution step to ensure that the following step begins using the tangent stiffness
matrices computed from the previous result. However, it may also be used following a linear
solution step, in which case the stiffness matrix is recomputed based on the current value of
displacement.

The tangent stiffness matrix is assembled at the subdomain level from computations
at the element level. It represents the partial derivative of the force with respect to the

UNCLASSIFIED - UNLIMITED RELEASE 61

displacement, i.e.
Ktangent = ∂f

∂u
(25)

In eigen analysis, the tangent stiffness matrix replaces the linear stiffness matrix in the
eigenvalue equation. This permits computation of modal response following a preload. In
nonlinear transient dynamics, the tangent stiffness matrix is used in the Newton (or other)
iteration scheme used to reduce force residuals.

2.1.31 Transhock

The transhock solution method is used to perform a direct implicit transient analysis
followed by computation of the shock response spectra for the degrees of freedom in a spec-
ified node set (all node sets are defined in the Exodus file). The following table gives the
parameters needed for transient shock analysis.

Parameter Argument
time_step Real
nsteps Integer
nskip Integer

srs_damp Real

The parameters time_step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The parameter nskip
controls how many integration steps to take between outputting results and is optional. (It
defaults to 1, which is equivalent to outputting all time steps).

The parameters freq_step, freq_min, and freq_max are used to define the fre-
quencies for computing the shock response spectra. They are identified in the frequency
section along with an application region (see section 2.10). The range of the computed fre-
quency spectra is controlled by freq_min and freq_max, while freq_step controls
the resolution. The accuracy of the computed spectra is not dependent on the magnitude of
freq_step. This parameter only controls the quantity of output.

The keyword srs_damp is a damping constant used for the shock response spectra
calculation and is optional. It represents the damping for each single degree of freedom
oscillator in the shock spectra computation. Its default value is 0.03. Figure 5 provides an
example.

The shock spectrum procedure will only compute acceleration results. The options speci-
fied in the OUTPUT and ECHO blocks are used in the transient portion of the analysis, but
are ignored for the post-processing of the transient results into shock spectra. Thus, if dis-
placement, velocity, and/or acceleration is selected in the OUTPUT and/or ECHO sections
for a shock spectra analysis, the results echoed to the output listing or the Exodus output

62

file will be time history results as requested, but the only shock spectra results will be for
acceleration response for the nodes in the specified node set. The calculated shock spectra
are written only to the frequency file (*.frq); they are not output to the Exodus results file.

SOLUTION
transhock

time_step .00005
nsteps 500
nskip 1
srs_damp .03

END

FREQUENCY
freq_min 100.
freq_max 10000.
freq_step 100.
nodeset 3
acceleration

END

Figure 5: Transhock Example Input

2.1.32 Transient

The transient solution method is used to perform a direct implicit transient analysis.
The following table gives the parameters needed for transient analysis.2

Parameter Argument Default Purpose
time_step Real 1 set the time step
nsteps Integer 100 set the number of steps
nskip Integer 1 set output frequency

start_time Real 0 start time for transient analysis
flush Integer 50 control file buffering
rho Real none - see below select time integrator

transfer string none Use sierra transfer

The parameters time_step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The optional start_time

2 In addition to the displacement based linear transient dynamics driver, there is an older, acceleration
based driver. The old driver may be selected using the old_transient keyword. This driver is not
recommended unless sensitivity analysis is required. It is no longer fully maintained, and will be removed in
future releases.

UNCLASSIFIED - UNLIMITED RELEASE 63

allows the analyst to define the start time of the transient simulation. It defaults to zero. The
parameter nskip controls how many integration steps to take between outputting results
and is optional. (It defaults to 1, which is equivalent to outputting all time steps).

The parameter flush controls how often the Exodus output file buffers should be
flushed. Flushing the output ensures that all the data that has written to the file buffers
is also written to the disk. This parameter also controls the frequency of output of restart
information if requested. Too frequent buffer flushes can affect performance. However, in a
transient run, data integrity on the disk can only be assured if the buffers are flushed. A
flush value of -1 will not flush the Exodus output file buffer until the run completes. The
default value is to flush the buffers every 50 time steps.

We note that multiple time step values, along with the corresponding number of steps,
can be specified for transient analysis. This can be useful for separating the simulation into
a section of small time steps followed by a section of larger time steps, or vice versa. The
following provides an example of the use of multiple time steps.

solution
time_step 1e-5 1e-3
nsteps 100 500
nskip 10 1

end

In this case, the user requested 100 time steps of ∆t = 1E − 5, followed by 500 time
steps of ∆t = 1E − 3. There is no practical limit on the number of such regions that may
be specified.

Integrator selection

Two time integrator schemes are available for direct time integration. The method and
the parameters of the integrator are selected using the keyword rho. If this keyword is not
found, the time integrator defaults to a standard Newmark-Beta integration scheme3. If the
rho parameter is used, then the Generalized Alpha method1617 is used, and the value of the
numerical damping is controlled by rho.

*** IMPORTANT ***
Because of limited accuracy in the solvers, the Newmark-Beta integrator
is conditionally unstable. If no damping is provided, it occasionally
diverges as time progresses. This is described in a little more detail in
section 1.1 of the theory manual. Therefore it is strongly recommended
that either proportional damping or numerical damping be used in all
time integration.

3The Newmark-Beta integration is described in detail in most finite element text such as Cook or Hughes.

64

The parameter rho defines the Numerical damping of the Generalized Alpha method.
Rho varies from 0 (maximal damping case) to 1 (minimal damping case). If rho is not
specified in the input file, the integrator defaults to the Newmark beta method.
Otherwise, the code uses the value of rho given by the user to compute the parameters
needed for the Generalized Alpha method. Therefore, there is no value default for rho, as
shown in the table above, since if it is not specified the code uses the Newmark beta method
instead. If rho is specified to be greater than 1 or less than 0 an error message is printed.
The three parameters newmark_beta, αf , and αm in the Generalized Alpha method
are computed automatically, given the value of rho, and thus these need not be specified
by the user. More detailed information on the implementation, and references can be found
in the description of the method in the Sierra/SD program_notes and theory manual.

In order to achieve second order accuracy and unconditional stability, we must satisfy
the following conditions.

αm < αf <= 1
2

γn = 1
2 − αm + αf

βn ≥
1
4 + 1

2(αf − αm)

(26)

The code automatically computes these parameters such that they meet these criteria.
Specifically,

αf = ρ/(1 + ρ)
αm = (2ρ− 1)/(1 + ρ)
βn = (1− αm + αf) · (1− αm + αf)/4
γn = 1/2− αm + αf

We note some special cases of interest. If ρ = 0, we have that αf = 0 and αm = −1. This is
the maximum damping case. If ρ = 1, we have that αf = αm = 1

2 , which yields βn = 1
4 , and

γn = 1
2 . This is similar to the classical undamped Newmark-beta method, although we note

that it is a different algorithm since αf = αm = 1
2 implies some lagging in the time-stepping

procedure. The classical undamped Newmark-beta method has αf = αm = 0.

Unlike the proportional damping parameters, there is no direct relation between rho
and an equivalent modal damping term. A value of rho=0.9 is recommended for most
analyses. The Generalized Alpha integrator imparts numerical damping to the solution that
most strongly affects high frequency content. Users must to check that the damping in the
frequency range of interest is physical. For example with a time step size of 1e− 5, damping
has the most effect at frequencies above the Nyquist frequency .5e+ 5.

UNCLASSIFIED - UNLIMITED RELEASE 65

2.1.32.1 Transfers: Sierra/SD can couple at each time step with the Sierra Trans-
fer Services. Loads and boundary conditions may be supplied by an external application,
while Sierra/SD supplies displacements and velocities on the interface. This coupling is
implemented for the Gemini application for underwater applications. Using the transfer
services may impact other parameters. For example, Gemini typically controls the time
step of both the fluid and the structural regions. Such a transfer is indicated by the trans-
fer keyword. See section 2.2.7 for more details. An example is shown in Figure 6. Use
of the explicit integrator with Gemini is discussed in section 2.1.34.2 (page 69). Note that
both the explicit and implicit integrators may be used with Gemini, but there are definite
performance trade-offs.

Both explicit and implicit transient solutions in Sierra/SD may subcycle if they need to
take a smaller time step than the one provided via the transfer services. Explicit transient
calculates a stable time step based on the largest eigen value of the problem and must not
exceed that step size regardless of the transferred step size.

Implicit transient can take arbitrarily large steps, but more accurate results might be
obtained by telling to take smaller steps and subcycle similar to explicit transient. In this
case the subcycle time step is specified through the user input time_step parameter. If no
time_step is specified in the Sierra/SD input file, the transferred time step is always used.
If the time_step value is larger than the transferred time step, the transferred step size is
used. If it is smaller, Sierra/SD will take multiple steps of the specified size to get to the
transferred step. This could result in the last time step being smaller than the previous steps.
To avoid large inconsistencies in the output file, if this final step is less than ten percent of
the size of the previous steps, the time is amortized over all previous steps and all steps will
be the same, slightly larger size.

SOLUTION
case coupled

transient
// no loads or bc needed
transfer iterate

END

Figure 6: Transient/Transfer Example.

2.1.33 TSR_Preload

The tsr_preload solution method reads an Exodus file with a previously computed
Thermal Structural Response (TSR) into Sierra/SD for a subsequent statics or transient
dynamics analysis. This is not a fully coupled calculation. Rather, stress results are read
from the file, an equivalent internal force is computed, and that internal force is combined
with the applied force throughout the transient run. A tsr_preloadmay only be specified

66

as part of a multicase solution, and it must be followed by a transient dynamics or statics
solution (see paragraphs 2.1.1 and 2.1.32 respectively).

Note that since the stresses are actually converted into a force, and since there is no
immediate deformation in transient dynamics, the elastic stresses output by Sierra/SD will
be very small initially, i.e. they will not contain a contribution from the thermal stress.
However, at large times, the deformation from the internal force will result in an elastic
stress opposite to that of the thermal stress. The linesample method 2.12 recovers the
input thermal stress as an output quantity (in either Matlab or Exodus format).

The tsr_preload solution method is considered to be a temporary solution to a more
complicated problem. In the future, TSR analysis will involve coupling to other mechanics
codes. In many cases a thermal load (section 2.14.7), may provide equivalent capability.

Stress data input must be stored in the geometry file, i.e. the geometry_file specified
in the FILE section (see paragraph 2.11). Data in the Exodus file must strictly match
these criteria. There must be only one time step in the result. That time step must have a
number of different element fields defined. These correspond to the six stresses and up to 27
different integration points of a hex20. Other solid elements are also supported. For those
elements only the number of integration points applicable to that element are used. Unused
integration values will be ignored. If in doubt, provide the extra integration data as missing
integration points do NOT provide an error - rather they set the value to zero. Shell and
beam type elements are not supported in tsr_preload.

The labels for the stresses must be as shown in the table below. In each case, replace %d
with an integer representing the integration point value (0 to 26). Do not zero pad.

Name Definition
SIGXX_%d σxx, the xx component of stress
SIGYY_%d σyy, the yy component of stress
SIGZZ_%d σzz, the zz component of stress
SIGYZ_%d σyz, the yz component of stress
SIGXZ_%d σxz, the xz component of stress
SIGXY_%d σxy, the xy component of stress

The linedata_only keyword indicates that no system matrices should be computed, but
the linedata specified in the linesample file should be computed (see section 2.12). This
is for verification of data transfer. The following is an example solution section for a TSR
preload followed by transient dynamics.

SOLUTION
title ’Pure bending from initial stress’
case tsr

tsr_preload
load 1

UNCLASSIFIED - UNLIMITED RELEASE 67

case trn
transient
time_step 1.e-6
start_time 1.0e-3
nsteps 3
nskip 1
load 2

END

If executed on a file with geometry_file=’example.exo’, this will produce two output
files, example-tsr.exo and example-trn.exo. The first of these has very little useful
information. The second contains the displacements (or other variables) from the transient
analysis.

Line Sample

One additional feature for thermal structural response is the ability to do line sam-
pling 2.12 on the original Exodus file containing the element stresses. This is useful for
debugging and verification. It allows the stresses along lines within the structure to be ex-
amined. Sampling occurs only for data stored on integration points using variables names
described above. Line sample is used for energy deposition (see the Two Element Exponen-
tial Decay Variation Hex20 problem18). Energy deposition is interchangeable with supplying
an applied temperature.

In tsr_preload, the input Exodus file is required to contain at least one of the following
fields: stress, temperature or energy deposition. Any field that is not found in the input
Exodus file is reported as a zero field in the output line sample output file.

2.1.34 Explicit Solver

A preliminary explicit solver is now available in Sierra/SD . To use the explicit solver,
the keyword EXPLICIT must appear within the SOLUTION section of the input. Note that the
explicit integrator requires a lumped mass matrix, and such a matrix will be generated for
this solution. However, in a multicase solution, other procedures may not require a lumped
mass. It is strongly recommended that a lumped mass assembly be used for all elements of
the solution if an explicit transient is part of the solution. See section 2.2.3.

Parameters for the explicit solution procedure are included in Table 20, and the pur-
pose of the keywords are detailed below.

termination_time The solution will end at the termination time. This provides con-
trol over the total length of the time integration, as the number of steps depends on

68

Table 20: Explicit Transient Solution Parameters

Parameter Argument Default
termination_time Real 0
time_step_scale_factor Real 0.9999
update_step_interval integer 500
initial_time_step Real 0
time_step_increase_factor Real 1
time_step_estimation String global_max_eigenvalue
nskip integer 1

the current time step, which may change during the analysis. The last step is adjusted
to end the simulation precisely at the termination time.

time_step_scale_factor The scale factor provides a means of limiting the stable
time step. By default, Sierra/SD uses the maximum eigenvalue of the system to
compute the stable time step. Note that this is a very accurate measure of stability,
and typical analyses should run with a time step somewhat less than the limit.

update_step_interval This determines the frequency at which the stable time step
is computed. Computation of the global maximum is relatively expensive and would
not normally be performed at every time step.

initial_time_step A user provided initial time step may be provided. It will be
honored provided that the stable time step is not less than this initial step.

time_step_increase_factor The increase factor provides a means to gradually
change the user provided initial time step. In no case can the time step exceed the
stable time step.

time_step_estimation Currently the global maximum eigenvalue is the only means
of computing the stable time step.

nskip By default, output is provided in the Exodus file at each time step. The nskip
parameter lets the user reduce the volume of output to an exact multiple of this pa-
rameters. Note that there may be aliasing problems if too much data is skipped.

Most of the parameters addressing control of the time step are shown in Figure 7.

An example of input for the explicit solver within a solution context is as follows:

SOLUTION
TITLE = Example of input for explicit solver.
LUMPED
EXPLICIT

INITIAL_TIME_STEP = 2.13e-6

UNCLASSIFIED - UNLIMITED RELEASE 69

Initial step

Stable Time Step
update step interval = 4

Scale Factor = 0.8

Actual Time Step Used
Step Increase Factor=1.04

Figure 7: Explicit Time Step Control Example

TERMINATION_TIME = 5.0e-3
END

2.1.34.1 Explicit Integrator Limitations

In the preliminary implementation force boundary conditions may be applied, but no kine-
matic boundary conditions are available.

2.1.34.2 Explicit Integrator with Gemini

Time integration with Sierra/SD usually uses the standard implicit integrator. The explicit
integrator is provided to address performance issues with coupled physics where the other
domain may be controlling the time step. One such example is Gemini, a fluids code used
by the Navy.

2.1.35 Geometric Rigid Body Modes

This section depends on section 2.14.16. In SierraSD, it’s possible to use the geometric
rigid body modes. There are three examples here. The first example just brings in the rigid
modes. The second example uses the modes in solving an eigenvalue problem. The last
example uses the Modal Transient capability 2.1.21. The third example uses the modes in a
modal transient simulation to deflate out the rotations.

The rigid body modes are requested in the SOLUTION block.

SOLUTION
geometric_rigid_body_modes

END

70

PARAMETERS
num_rigid_mode 6

END

The rigid body modes can be incorporated into the modes computed in a modal analysis,
and then used for other purposes.

SOLUTION
case out

geometric_rigid_body_modes
case flexibleModes

eigen
nmodes 10

END
PARAMETERS

num_rigid_mode 6
END

The rigid body modes are used as the first 6 eigenvectors. Then Sierra/SD computes 4
modes more eigenvectors, for a total of 10.

One use of the geometric rigid body modes is in a q-modal transient simulation to deflate
out the rotational rigid body modes, and retain the translational rigid body modes. This is
equivalent to use of the FilterRbmLoad for direct transient solutions (though accomplished
in a very different way).

SOLUTION
case out

geometric_rigid_body_modes
case vibration

eigen
nmodes 10
modalfilter rotation

case transient
modaltransient
time_step 1.e-5
nsteps 62
load 42

END
PARAMETERS

num_rigid_mode 6
END

UNCLASSIFIED - UNLIMITED RELEASE 71

modalfilter rotation
add all
remove 4:6

END

2.1.36 Waterline of Rigid Body

It can be very advantageous to determine the waterline of a ship prior to commencing
more complex analysis of the body. The waterline capability solves the nonlinear geo-
metric equations of equilibrium for a rigid ship in water. An example is shown in Figure 8.
Each keyword is described in Table 21.

Keyword Description
waterline selects the nonlinear rigid body waterline method

max_iterations option maximum number of iterations (100)
tolerance_force optional normalized force balance parameter (1e-6)

delta regularization parameter used for Newton step (1e-8)
point_a coordinates of point ’A’ on estimated water surface
point_b coordinates of point ’B’ on estimated water surface
point_c coordinates of point ’C’ on estimated water surface

Table 21: Waterline Parameters

The parameters point_a, point_b and point_c indicate the x, y, and z coordinates of
three points on the estimated water surface. These three points define a plane, which serves
as the initial guess of the waterline. The waterline normal is determined using the right hand
rule with these points as in Figure 9. The Newton implementation then uses this plane as
the initial guess and begins iteration towards force and moment equilibrium. On completion,
we write out the coordinates of three points on the final (converged) waterline surface, along
with the Cartesian coordinate system defined by these points. This output appears in the
result file in text format.

The other parameters control the optimization.

max_iterations sets the maximum number of iterations.

tolerance_force is a normalized force residual. The norm is computed from the residual
vector,

Fresidual = [Fz/W,Mθ1/(LW), Mθ2/(LW)]
where W = Mg is the total weight of the ship, and L is a characteristic length of the
model.

delta is currently unused.

72

SOLUTION
case ’waterline’

waterline
max_iterations 100
tolerance_force 1.0e-6 // absolute tolerance on force convergence
delta = 1.0e-8 // regularization parameter used for Newton step
point_a 0 0 0 // coordinates of point ’A’ on estimated water surface
point_b 1 0 0 // coordinates of point ’B’ on estimated water surface
point_c 1 1 0 // coordinates of point ’C’ on estimated water surface
load 1

case ’transient’
...
END

LOAD 1
sideset 1 // wetted sideset
pressure = 1
function = 1 // this defines rho*g*h

body
gravity = 0 0 9.8

END

// this assumes rho=1000, g=9.8
FUNCTION 1

type LINEAR
data 0.0 0.0
data 1.0e6 9.8e9

END

Figure 8: Waterline Example

UNCLASSIFIED - UNLIMITED RELEASE 73

Figure 9: Waterline Coordinate Definition. The plane of the surface is defined by three
points: A,B, and C. The θ1 rotation is about the line from A to B, while the normal is
defined using the right hand rule.

In addition to the entries in the “solution” section of the input, this method requires two
load entries and a function. The load entries define the sideset for the wetted surface and
the gravity load.4 The function defines the pressure as a function of depth. In the example
of Figure 8, the argument to the function is the depth, h. The function returns P = ρgh.

The waterline iteration may output nodal data during the iteration. Select “force” to out-
put the buoyancy force. Select “npressure” to output the nodal pressure. See the “outputs”
section, 2.8, for details.

2.1.36.1 Limitations: There are a number of limitations to this method.

gradient based optimization These algorithms are based on a nonlinear gradient base
optimization scheme. These are powerful tools, but exhibit limitations that may not
be obvious at first blush. Some of these are listed below.

1. Singular tangent matrices are generated in various conditions, which cause the
solution to terminate. A very common condition causing a singular tangent ma-
trix is a body completely submerged in a constant density fluid. For simplicity,

4 Gravity is specified using the standard load keywords of a body load with a gravity vector. However,
for the waterline solution only, only the magnitude of the gravity vector is relevant. The gravity direction
is always directed opposite the normal to the surface for this solution type.

74

consider a unrotated cube5 of edge length “S”. The net force on the cube is,

Fnet = (AreabottomPbottom − AreatopPtop)−mg (27)
= ρfgS

2(hbottom − htop)−mg (28)
= ρfgS

3 − ρsgS3 (29)

where ρf and ρs are the densities of the fluid and solid respectively. What is
significant, is that the net force does not depend on the average depth. Thus,
Kt = ∂Fnet

∂z
= 0. Obviously, Kt = 0 for a ship that is completely out of the water

as well.
Real seawater is not constant density, so one may hope that an optimal solution
may be found in this case. However, because the pressure is usually expressed as a
piecewise linear function, the same problem occurs. Use of a runtime function may
allow computation of higher order derivatives, but this has not been evaluated.
Figure 10 plots net force versus depth for a body. Only the partially submerged
region has a nonzero tangent matrix that can be determined by a gradient based
optimization scheme.

Depth

N
et

 F
o

rc
e

Fully UnSubmerged

Fully Submerged

Figure 10: Net Force vs depth for a Rigid Body. Only the unshaded region, where the body
is partially submerged, has a nonsingular tangent matrix.

2. Gradient based solution methods often have trouble with local minima. These can
occur in the case of unstable systems, such as a very light, tall cylinder floating
on a dense fluid. A local minimum occurs for the cylinder standing vertically. A
global minimum is achieved when the cylinder is perturbed and falls to the side.

3. Gradients may also go to zero for symmetry reasons. A perfect cylinder floating
on the water has no sensitivity to roll.

5The arithmetic is easier for a cube, but the arguments can be shown to be completely valid for any rigid
body.

UNCLASSIFIED - UNLIMITED RELEASE 75

sideset orientation: The wetted surface defines the pressure surface. The surface does
not need to be closed, but there can be no contribution to the net force from portions
of the model that are submerged, but not part of the sideset.
The wetted surface is also defined as a single sideset. The outward direction of the
sideset should be pointed into the water. There is no check for a reversal of the normals
on the sideset. This must be evaluated by the analyst.

Z orientation: Current design requires that the initial configuration has gravity approxi-
mately aligned with the global Z coordinate.

2.1.37 Gap Removal

The removal of gaps in tied surfaces can occasionally result in distorted elements. By
default gap removal is turned on for node/face interactions in tied surface (see section 2.19).
While the modified mesh (with gaps removed) is typically output as part of the solution,
badly deformed elements may make it impossible for the solver to converge; thus, no output
is available for the analyst to see the effects of the gap removal.

The gap_removal solution method provides a capability whereby a user can see the
effects of the gap removal process onTIED DATA blocks of interest. The gap_removal
solution method simply reads in the mesh, applies gap removal to the specified TIED
DATA blocks (all TIED DATA blocks by default), and writes out the new mesh with
gap removed. Element quality and a boolean to represent element inversion are output as
elemental variables.

An example is given below.

SOLUTION
gap_removal

END

TIED DATA
surface 1,2
search_tolerance 1.0e-3

END

In this example, the gap_removal solution method will apply gap removal to theTIED
DATA block corresponding to surfaces 1 and 2, and then write out the updated mesh with
element quality measure. The suffix “-gap” will be appended to the output exodus file
by default when gap removal inverts elements (fatal error). However, setting “ignore-gap-
inversion” to true will suppress this output behavior.

We also note that the gap_removal solution method is a utility for visualizing the ef-
fects of gap removal. Since gap removal is applied by default to eachTIED DATA block,

76

in all solution methods (see section 2.19), it can at times cause undesirable mesh distortion.
If the user suspects that gap removal is causing mesh quality issues, gap removal could
be turned off in the TIED DATA blocks (see section 2.19), or the gap_removal
solution method could be used to generate data to visually diagnose the problem.

Since the gap_removal solution method runs very quickly, the best strategy is to
is to apply it to the TIED DATA blocks of interest, one at a time, and visualize each
resulting mesh to check the mesh quality.

2.2 Solution Options

The options described in Table 22 and in the following paragraphs are part of the So-
lution section in the input file. None of the keywords are required. Note that in multicase
solutions most of these parameters may be applied separately within the subcase (see section
2.1.1.1).

Table 22: Sierra/SD Solution Options

Option Description Parameters
restart restart options none, read, write or auto
lumped Use lumped mass matrices none
lumped_consistent Use a linear combination of

lumped and consistent mass
matrices.

Real

solver Identify solver used auto
constraintmethod method of applying MPCs Lagrange

or Transform
scattering Separate incident and scat-

tered acoustic loads.
no_symmetrize_struc_acous turn off symmetrization for

structural acoustics
none

transfer transfer options send, receive, or iterate

2.2.1 Restart – option

Option restart controls restart file processing. Restart files permit the solution to be saved
for later use. Only a limited capability is provided, but it is intended to meet most of the

UNCLASSIFIED - UNLIMITED RELEASE 77

typical needs for structural dynamics. Note that except for eigen restarts, the restart files
are independent of the Exodus output, but the restart options may significantly affect the
Exodus outputs. Eigen restarts directly use the Exodus output. Application of restarts
in specific sections is detailed in the following paragraphs. See Figure 11 for details on eigen
restart.

There are four values associated with this option.

none indicates that restart files will be ignored. They will be neither read, nor written.
Existing restart files will not be altered in any way. Restart=none is the default
selection if no restart options are entered in the solution block.

read indicates that existing restart files will be read, but no output restart files will be
written. If the restart files do not exist, a fatal error will result.

write indicates that existing restart files will be ignored, but restart files will be written.

auto is a combination of read and write. However, unlike read, the existence of previous
restart files is optional, i.e. there will be no error message if there are no existing
restart files. Invalid restart files will produce a warning, but not a fatal error.

Restarts are designed to ensure accuracy of the solution. However, restarts in Sierra/SD are
not transparent in the sense that there will be small differences in two solutions to a problem
when one solution involves a restart. Restarts may also have an expense. For example, the
FETI solver uses an acceleration technique where the values of previous solutions are used
as a starting place for new solves. The information associated with previous solutions is not
stored in the file.

The precision of the Exodus data used to store the results may also affect
restarts. For eigen analysis where restarts are expected, it is strongly rec-
ommended that higher precision be specified for the Exodus file output.
See section 2.8.35.

For transient dynamics, the state of the machine at the most recent time step is recorded.
To avoid problems with corruption of a database, the three nodal vectors (disp, velocity,
acceleration) and applicable element data are recorded at each time step, but on alternate
locations in the file. If previous Exodus files exist, they will be appended. Data is written
at the same interval as the Exodus output.

When restarting a multicase solution, the current time is used to determine which case
the restart will begin. For example, assume the following solution block is defined.

Solution

78

case one
transient
restart=auto
time_step 1e-6
nsteps 200

case two
transient
restart=auto
time_step 1e-5
nsteps 300

End

If restarting at TIME=1E-4, case “one” has a final time value of T_F = T_0 + 200*1E-6 =
2E-4, assuming T_0=0. Since TIME < T_F, case ‘one’ will restart the solution. If restarting
at TIME=2E-5, then case ‘one’ will not perform any calculations. Case ‘two’ will then be
tested to see if a restart will begin there.

An important note about restarts with multicase is that the case names in the restart
input deck must match those from the original input deck. This is because the names of the
exodus files that are written to disk in restart contain the case name strings. Thus, in the
following example with case name “one”, both the original and restart input decks must have
the same case names. If the original (write) input deck had the following case description

Solution
case one

transient
restart=write
time_step 1e-6
nsteps 200

End

Then the restart (read) input deck would look as follows

Solution
case one

transient
restart=read
time_step 1e-6
nsteps 200

End

where the case name “one” is the same in both input decks.

UNCLASSIFIED - UNLIMITED RELEASE 79

2.2.1.1 Restart Solution Support. Restarts are not supported in all solutions types.
They are supported for the following.

• Eigen

• transient

• nltransient

• modaltransient

• QEVP (with anasazi and sa_eigen methods)

Note that none of the modal solutions except modaltransient support restart. Typically most
of the computation time for these solutions is in the eigen analysis. It is recommended that
the multicase solution be used, with a restart in the eigen analysis portion of the solution.

Table 23 illustrates the current supported restart options for transient analysis. As shown
here, one can restart a modaltransient analysis from a transient analysis, and vice
versa. Restart is not supported for qmodaltransient.

Integrator NLtransient transient modaltrans explicit qmodaltrans
NLtransient TESTED ? ? ? NA
transient TESTED TESTED TESTED TESTED NA
modaltrans TESTED TESTED TESTED TESTED NA
explicit TESTED TESTED ? TESTED NA
qmodaltrans NA NA NA NA ?

Table 23: Supported restart capabilities for transient integrators in Sierra/SD.

The restarts of the QEVP solution are currently limited to only read all of the modes
requested or none. Therefore you cannot ask for more modes than are in the restart file
and have Sierra/SD calculate only the additional modes. You can however save previously
calculated modes for use in follow on solution methods.

As of 1/2010, all restart files are in the exodusII format. This permits evaluation and
manipulation of the data using standard tools. Details of the file names and formats used
for restart are included in Table 24.

2.2.1.2 Restarts with Virtual Nodes and Elements Currently, Sierra-SD creates
virtual nodes and elements when a model has features like tied joints, infinite elements, and
superelements. These virtual nodes and elements are created internally during execution of
the code, and result in the analysis having more degrees of freedom than are specified in the
Exodus file.

80

In eigen analysis, starting with release 2.7, no restart file is written – the analysis
is restarted based on the Exodus output. Thus, the displacements must be
written to the Exodus output or no restart is possible.
This type of restart has the advantage of simplification of file management
(there are no extra files written). Because the files are written in Exodus
format, it is possible to join the data and re-spread over a new domain decom-
position. For example, one could compute modes on 20 processors, join the
results and compute the modal based solutions on a single processor. Diagnosis
of error is also much easier because the files are in a well understood format.
Reuse of the Exodus output does impact the options available as follows.

NONE ensures that no data will be read from existing Exodus files. However,
output, written in the normal fashion, will replace existing files. As a
consequence this option no longer ensures that the results of the previous
analysis will not be modified.

AUTO Data is optionally read from existing files. They will be updated to
include additional calculations. Thus, this option is not changed.

READ now operates almost identically to the AUTO option. The only differ-
ence is that the program will abort if no restart data is available. This
is different from the original design in that the files are updated. Option
READ no longer means read-only.

WRITE is unchanged. No restart files are read, but results will be written at
the end of the analysis. This option is effectively identical to “NONE”.

Figure 11: Notes on Eigen Restart

When the restart files described in Table 24 are written to disk, these virtual elements
and nodes will also be written, resulting in Exodus files that have more nodes and elements
than were in the original Exodus file. The restart Exodus output files can be visualized
in Ensight and the data can be processed in matlab, just like any other output Exodus file.
Thus, the restart files provide this additional benefit of being able to post-process the virtual
nodes and elements. For example, one may wish to visualize the RBARS created for a Tied
Joint in Ensight. This can be done by visualizing the restart files.

We note that currently, the infinite element output to the restart file only allows some of
the infinite elements to be visualized. This will be corrected in future releases.

2.2.2 Solver

As Sierra/SD evolves, various solvers are available for computation of the solution.
Each solver brings with it different capabilities and sometimes unwanted features. Currently
available solvers are listed in the following.

UNCLASSIFIED - UNLIMITED RELEASE 81

Solution filename Details

eigen example-out.exo

Use the standard Exodus output for
restart. Displacements must be writ-
ten or no restart is possible. Other
variables (such as strain energy) may
also be written.

qevp example-out.exo

Uses standard Exodus output for
restart. No additional modes may
be computed, but the superposition is
possible.

transient
nltransient
explicit

example-out.rst_trans.exo
The two most recent time steps are
written. They are only written at the
“flush” interval.

Table 24: Restart file format and names. Details of the restart files for a file named “exam-
ple.exo” for various solutions.

AUTO Use the best known solver. Generally this is recommended. The matrix of solvers
versus solution types is messy, and generally the best solution will be found by using
this option. For example, there is no need to change the solver as you move from serial
to parallel solutions.

CLOP This solver is based on a two-level overlapping Schwarz preconditioner with a par-
tition of unity coarse space.19 CLOP has historically been applied to problems with
very large numbers of constraint equations which other solvers could not accommo-
date. Although no longer under development, the CLOP solver is currently supported
by Clark Dohrmann.

GDSW The Generalized Dryja, Smith, Widlund (GDSW) solver is based on a domain
decomposition preconditioner which combines overlapping Schwarz and iterative sub-
structuring concepts.20 Like CLOP, the GDSW solver is well suited to solving problems
with large numbers of constraint equations. It has also been observed to be very com-
petitive with other parallel solvers, even for problems with only a small number of
constraints. The GDSW solver is currently under development and supported by the
Sierra-SD team. The most recent development efforts for the GDSW solver have been
focused on implementation and testing of a new Helmholtz solver for direct frequency
response analysis.

FETI-DP This solver is the workhorse for parallel solutions. A full description of the solver
is beyond the scope of this users manual (references are on the web). FETI-DP was
developed by Charbel Farhat, Kendall Pierson and others.21 It is very scalable, and
robust. Multipoint constraints are handled using Lagrange multipliers. The paral-
lel solution process must be used with the solver, but it can be reduced to a single
subdomain. Care must be used to ensure that subdomains are mechanism free.

CF_FETI An evolution of FETI-DP, this solver adds the capability to compute nonlinear

82

constraints within the solver. This is an advanced method of computing gap and
contact response. It is a development solver platform, and is not available on all
machines. The CF (Charbel Farhat) solver is templated software that supports complex
solves as well as real. Thus it can be used for direct frf calculations. The CF solver
is provided for general availability on most platforms after release 2.0. Further details
are available in section 4.

Sparsepak This solver is the workhorse for solutions using a serial executable and is the
default solver for single processor runs when using a parallel executable. It is a direct
solver, and is part of sparspak developed by Esmond Ng. The solver is fairly robust,
but may fail for singular systems. It occasionally has problems for very small systems.
Originally written as a Cholesky decomposition, it has been extended to compute
LDLT . Constraints are eliminated using a transformation matrix method. It may be
abbreviated as “spak”.

SuperLU This package, available from NERSC, provides both real and complex solutions.
In Sierra/SD , the complex version of SuperLU is the default solver for computing
the solution of direct FRFs when using a serial executable or for single processor runs
when using a parallel executable.

Generally no user input is required for specification of a solver. Indeed, up to version 1.0.5 of
Sierra/SD , only one solver was ever available at any time (i.e. we built separate executables
if another solver was desired). Usually the specification can be left off, or specified as auto.
If a solver is requested and unavailable, a warning will be issued, and auto will be selected.

The solver may be specified as a default (above the case keywords as detailed in section
2.1.1.1), or it may be individually specified within the case framework. The default value is
auto. In the example shown below FETI-DP will be used for the eigen analysis, FETI-DPC
for transient dynamics, and the auto selection for the direct frequency response. If “input”
is specified in the “echo” section (see section 2.7) then the solver information will be echoed
to the results file.

SOLUTION
solver=auto
case eig

eigen nmodes=50
solver=feti-dp

case nlt
nltransient
solver=clop
(other parameters)

case frf
directfrf

END

UNCLASSIFIED - UNLIMITED RELEASE 83

2.2.3 Lumped – option

Option lumped in the SOLUTION section causes Sierra/SD to use a lumped mass
matrix, and not a consistent mass matrix, in the analysis. The method used here is to scale
the diagonal terms of the mass matrix so as to ensure the proper total mass, and set the off
diagonal terms to zero.

The drilling degrees of freedom associated with beams and shells
can generate spurious modes when they are lumped. As a con-
sequence, Sierra/SD does NOT fully lump these degrees of
freedom. They are lumped in the element coordinate frame, but
transforming the mass matrix to the physical coordinates results
in a 3x3 entry for the rotations.

Option lumped_consistent in the SOLUTION section causes Sierra/SD to use
a linear combination of the lumped and consistent mass matrices in the analysis. A real
number α is read in following the lumped_consistent keyword. Then, the mass
matrix is formed as follows

M = α ∗Mlumped + (1− α)Mconsistent (30)

This modified mass matrix typically gives better dispersion properties than either the lumped
or consistent matrices alone.

2.2.4 Constraintmethod – option

The constraintmethod option is defined in the SOLUTION section to indicate
how multipoint constraints (MPC) will be applied. The selections for applying MPCs are
are Lagrange and Transform. These methods are explained in detail on pp. 272-278
in Ref. 22.

The constraintmethod is currently superfluous. When using the FETI solver, a
Lagrange multiplier method is the only method available. When using the serial solvers, the
only available method is Transform.

2.2.5 Scattering – option

For some acoustics and structural acoustics problems, it is advantageous to define the
loads in terms of an incident pressure instead of a total pressure. The solutions for the
scattered pressures follow the same differential equations as those of the total pressures. It
may be necessary to combine the incident and scattered terms to compute a total pressure.
See section 2.3 in the theory manual for details. Note that the scattering keyword applies

84

to all loads in the solution case. It is nonsensical to mix scattering pressure inputs with total
pressure inputs.

Scattering solutions require this keyword in the solution block. In addition, loads should
be applied properly in the LOADS block. The user must apply a load to both the structural
and the acoustic side of a wet surface. This is typically done using a function tailored for
that purpose.6

2.2.6 no_symmetrize_struc_acous – option

In structural acoustics problems, the default behavior is to symmetrize the structural
acoustic matrices. This is possible by simply multiplying the acoustic equation by a −1. We
refer to the theory manual for more details. There are cases where this symmetrization is
not possible (such as infinite elements), and in those cases the code internally switches to a
non-symmetric formulation.

However, in those cases where symmetrization is possible, the analyst may wish to aban-
don the symmetrization, and simply revert back to the original non-symmetric system of
equations. This may be advantageous from a solver and/or conditioning standpoint, or it may
just be of interest to see how the code performs in the non-symmetric case relative to the per-
formance when symmetrization is applied. In these cases, the non-symmetric GDSW solver
would be required for the solution. The keyword no_symmetrize_struc_acous
turns off symmetrization in the code, and forces the solver to solve the nonsymmetric system
directly. This keyword can be used in any solution case, and can vary from case to case.

2.2.7 transfer – option

Option transfer is used to request a transfer of data to or from another code. This can
be specified differently for each solution case. Currently, Sierra/SD can only be coupled
through the Sierra framework using this method. The type of data that is transferred and
other control parameters reside in a separate, Sierra input file, which must be used when
running these type of coupled analyses.

There are three values associated with this option.

send indicates that data will be copied from Sierra/SD to another code after the current
Sierra/SD solution case completes.

receive indicates that data will copied into from another code before the Sierra/SD so-
lution case starts. This is identical to having a receive_sierra_data solution case
preceding the current one.

6 the “plane_wave”, “planar_step_wave” and “shock_wave” functions compute both appropriate pres-
sures on the structure, and normal velocities on the acoustic medium. See sections 2.28.13, 2.28.14 and
2.28.16.

UNCLASSIFIED - UNLIMITED RELEASE 85

iterate indicates that data will be copied into Sierra/SD before a solution and out of
Sierra/SD after the Solution. The solution can then repeated with different sets of
transferred input data. This currently only works with implicit or explicit transient
solutions in Sierra/SD and effectively hands over primary control of time parameters
to the coupled code. In other words, the time step and number of steps are chosen
by the other code and Sierra/SD runs until it gets a termination signal from Sierra.
Note that even though Sierra/SD does not pick the time step size, it can sub cycle
and perform many smaller steps before converging on the coupled code’s time step.

2.3 PARAMETERS

This optional section provides a way to input parameters that are independent of the
solution method or solver. Only one parameter section is recognized in each file. The
parameters and their meanings are listed below and in Table 25.

WtMass This variable multiplies all mass and density on the input, and divides out the
results on the output. It is provided primarily for the english system of units where the
natural units of mass are actually units of force. For example, the density of steel is
0.283 lbs/in3, but “lbs” includes the units of g= 386.4 in/s2. Using a value of wtmass
of 0.00259 (1/386.4), density can be entered as 0.283, the outputs will be in pounds,
but the calculations will be performed using the correct mass units.
Sierra/SD , like most finite element codes, does not manage the units of the analysis.
The selection of a consistent set of units is left to the analyst. For example, if the
analyst uses the SI system (Kg,m,s) the units of pressure must be Pascals. Frequencies
are reported in Hz. For micromachines these units are quite awkward. It may be better
to use units of grams, millimeters and microseconds. The analyst must ensure that all
material properties and loads are converted to these units.
Some examples of useful units are shown in Table 26.

NegEigen Unconstrained structures have zero energy modes which may evaluate to small
negative numbers due to machine round off. The eigenvalues and associated eigenfre-
quencies are reported as negative numbers in the results files. However, many post pro-
cessing tools (such as ensight) require non-negative frequencies. By default, Sierra/SD
converts all negative eigenvalues to near zero values in the output Exodus files7. To
retain the negative eigenvalues in the output file, select parameter NegEigen.

OldBeam This option is provided for backwards compatibility with older beam models.
Early Patran models using the Exodus preference numbered the attributes incorrectly.
The first versions of Sierra/SD used that numbering. With the new numbering the

7Because many postprocessing tools are written for transient dynamics, they expect monotonically in-
creasing, positive values for the time. Since eigenvalues are written in the time columns of the output file,
they are converted to be monotonically increasing, positive values. Note that the numerically computed
eigen frequencies are also stored as global variables in the file

86

Keyword Arg Default Description
WtMass Real 1 Mass multiplier
NegEigen none negative eigenvalue flag
OldBeam none Beam attribute ordering flag
eig_tol Real auto Eigen value tolerance
MaxResidual Real 1 maximum residual for eigen
LinkStiffness y/n yes Link stiffness for rigid elems
nonlinear_default yes/no yes nonlinear element blocks
TangentMethod string element method of computing tangent
Info int 1 screen output control
syntax_checking int 2 syntax checking control
SkipMpcTouch none control of MPCS
condition_limit Real 1 element quality output control
badqual_limit Real 1020 element quality corner control
reorder_rbar none constraint reordering flag
thermal_time_step int last input of thermal data
thermal_exo_var string TEMP Exodus temperature variable name
energy_time_step int last input of energy data
energy_exo_var string TEMP Exodus energy variable name
FilterRbmLoad string nofilter control for filtering of rigid body

components in loads
RbmTolerance Real 1e-6 tolerance for rigid body zero
MatrixFloor Real 0 control of matrix fill
MaxMpcEntries int 106 maximum # entries in any mpc
Mpc_Scale_Factor Real varies multiplier for MPC
patch negative elements none check and fix element matrices
eigen_norm string mass “visualization” or “unit”
constraint_correction yes/no no orthogonalize constraints to RBMS
Mfile_format string sparse_function control output format for Matlab
RandomNumberGenerator string “rand” or “test”
RemoveRedundancy yes/no yes automatically remove redundancy
MortarMethod string dual dual or standard mortar method
ComplexStress yes/no no output complex stress in FRF solutions
num_rigid_mode none 0 number of system rigid body modes
ignore_gap_inversion bool false Ignore the change in quality

of elements that are caused by gap removal

Table 25: Available keywords in the Parameters section

UNCLASSIFIED - UNLIMITED RELEASE 87

Table 26: Some useful combinations of units.

length mass time wtmass density force modulus intrnl mass
m Kg sec 1 Kg/m3 N N/m2 or Pa Kg
ft slug sec 1 slug/ft3 lbf lb/ft2 slug
ft lbm sec 1/32.2 lbm/ft3 lbf lb/ft2 slug
in lbm sec 1/386.4 lbm/in3 lbf psi lbm/g
mm µg µs 1 Kg/m3 N MN/m2 or MPa µg
mm g sec 1 g/mm3 µN N/m2 or Pa gram
mm mg sec 1/1000 g/cm3 µN N/m2 or Pa gram

code had to change. Providing “oldbeam” in the parameters section selects the old
numbering. The new numbering will be used by default. At some point in the future,
we plan to eliminate this option.

Table 27: Beam Attribute Ordering

Attribute 1 2 3 4 5 6 7
old numbering area orientation I1 I2 J
new numbering area I1 I2 J orientation

eig_tol This is the tolerance used by ARPACK for eigensolution. If not provided, a
small value (near machine precision) is used.

MaxResidual This is a tolerance used to check the rigid body mode vectors calculated
by FETI. If this residual on the rigid body mode vector is larger than this tolerance,
Sierra/SD will abort. The default value is 1.0.

LinkStiffness This option makes it easier for some solvers to properly compute the
response when there are many rigid links. At present, only RBARS and RRODS
(see sections 3.38 and 3.37) are affected. The option causes Sierra/SD to compute
additional stiffness terms that would be associated with a beam (or truss) in place
of the rigid element. Since the constraint limits the deformation to zero, there is no
affect on the final solution, but the solution process can be significantly simplified
since singularities are removed from the stiffness matrix. Specify LinkStiffness=yes
or LinkStiffness=no. The default value is yes, which means the additional stiffness
terms are used.

nonlinear_default In nonlinear transient dynamics or nonlinear statics, computing
the fully nonlinear response of all of the elements in the mesh may be very expensive,
and in some cases it is not necessary to do so. For example, for a simulation that only
involves Joint2G elements and solid (3D) elements, the analyst may determine that the

88

nonlinear effects of the solid elements are negligible. In such cases, it is advantageous
to be able to control the nonlinear response of elements on a block-by-block basis.
In section 2.24.2 of this manual, a block-level parameter is described that turns the
nonlinearities on and off for individual blocks. In order to avoid having to enter this
parameter for each block, the nonlinear_default keyword allows the user to set
the default for all blocks. If it is set to no, then all blocks default to linear behavior
(unless specified otherwise in the BLOCK section), and if it is set to yes, then all
elements default to nonlinear behavior. Note that the block-level flags override the
nonlinear_default keyword. There are two possible cases for this keyword.

nonlinear_default=no All elements default to linear behavior.
nonlinear_default=yes All elements default to nonlinear behavior.

As noted in section 2.24.2 , there are limitations for using linear materials in nonlinear
analysis.

TangentMethod The tangent stiffness matrix may be used in a full Newton update in
nonlinear statics or transient dynamics (see sections 2.1.25 and 2.1.26). By default,
each of the elements can compute it’s own tangent stiffness matrix. There are cases
(particularly when elements are under development) when it is better to use a tangent
matrix computed from finite difference methods. There are three possible values for
this keyword.

TangentMethod=element The standard element method.
TangentMethod=difference Use finite difference.
TangentMethod=compare Use the standard method, but also compute the matrix

by the difference method. Unless “none” is specified in the ECHO section (2.7),
output of the difference of every element matrix in the model will be sent to the
results file.8

Info Sierra/SD outputs many different details to standard out. Most of the details are
for the developers. Many such things output are number of processors, and time taken
in certain loops. Also in some cases, the contents of an array or other such storage
type are output to the screen.
In many cases, this information is not wanted. The “info” option controls the output to
standard out. There are four different levels of control. Each level increasingly allows
more output to standard out. However, currently only two levels are supported. The
other two levels of control will added in the future.
The FETI block option “prt_debug” overrides “info” when it comes to FETI output.
In all other cases, “info” takes precedence. If there is no “prt_debug” command in the
FETI block, then FETI output levels are also determined by “info.”
The four levels of control are:

8 In parallel solutions the results file is written only for the first processor unless the “subdomains” option
is specified in the echo section (2.7).

UNCLASSIFIED - UNLIMITED RELEASE 89

0. Silent – Will only output warnings and std error to the screen
1. Normal – Will only output the kind of data most analysts would use
2. Detailed – Not currently implemented. Convergence, solution addressing issues.
3. Debug – All of the above, plus output deemed important for debugging.

Example of usage:

Parameters
info=0

End

This sets the “info” control level to Silent.

syntax_checking Sierra/SD has the ability to check input files for syntax and spelling
errors. This option controls this behavior. By default a violation is printed to the
screen and execution is terminated. If the user wishes, violations can be printed while
execution continue, or the checking for violations can be turned off completely.
The three levels of control are:

0. None – No syntax checking is performed.
1. Warnings – Syntax checking is performed and violations are printed as warnings.
2. Errors – Syntax checking is performed and violations terminate execution.

SkipMpcTouch Sierra/SD uses a unique method of determining an active degree of
freedom set. Unlike codes like Nastran which use an auto-spc method, Sierra/SD
loops through all elements and activates only degrees of freedom that are required for
elements. Multipoint constraints pose a particular problem because some codes (like
Nastran) may include multipoint constraints to unused degrees of freedom. Since these
are eliminated with the autospc, this poses no problem to these codes, but may confuse
Sierra/SD significantly. On the other hand, usually degrees of freedom associated
with mpcs should be included in the active set, and leaving them out can produce
errors.
As a stopgap measure, we provide the parameter SkipMpcTouch. If this param-
eter is set, no degrees of freedom will be activated through multipoint constraints.

condition_limit Element quality checks are important for evaluating the effectiveness
of the mesh. By default elements with moderately bad topology are reported. How-
ever, sometimes there are so many of these warnings, that the really bad elements may
get missed. The condition_limit parameter permits user control of the report-
ing. Setting this parameter to a larger number will eliminate message from marginal
elements. Element checking can also be turned off (see the elemqualchecks parameter
in the output section 2.8.5). The default value is 1.0.

90

badqual_limit In some meshes, a really bad element can completely dominate the
condition of the matrices to be solved. The correct solution is to correct the mesh.
However, sometimes it is very difficult to do this, particularly when no solution has
yet been found, and identification of the bad element is difficult.
The problem is especially bad for iterative solvers. This option controls the creation of
extra corner nodes in the FETI solver only. These corner nodes are placed around the
offending element which effectively moves that element stiffness into the coarse grid
where it is solved by a direct solver. Sometimes this can permit solution of systems
which could not otherwise be solved. A list of those elements tagged as “bad” is also
printed to stdout and to the .rslt file.

Note that the badqual_limit and the condition_limit are
ignored unless elemqualchecks=yes has been specified in the
output section (2.8.5).

reorder_rbar This option allows RBARs to be reordered so that the number of
RBARs connected to a single node is minimized. Having a large number connected to
the same node results in a highly populated matrix and a slow computation. Therefore,
reducing the number of connections can shorten run time.
If redundant RBARs are present (i.e. connections forming a cycle), they are re-
moved.
Specify reorder_rbar yes or reorder_rbar no. The default value is yes, which
means RBARs will be reordered.

thermal_time_step For thermal analysis solution procedures (i.e. statics or tran-
sient dynamics with a thermal_load body load), or for any solution procedure
that uses temperature dependent material properties, the temperature distribution of
the structure must be read in from the Exodus file. Typically, the input Exodus
files in this case would be the output files from a thermal analysis, and thus would
contain the necessary temperature data. Since such an analysis could contain several
time steps of temperature data, the parameter thermal_time_step allows the
analyst to select which set of temperature data is to be read into Sierra/SD . The
following gives an example.

PARAMETERS
thermal_time_step 10

END

In this case the user would be requesting that the temperature data corresponding to
the 10th time step be read into Sierra/SD .

energy_time_step This variable is identical to the “thermal_time_step” above, but
applies to cases where the energy density is input and must be converted to a temper-
atures. Either energy density or temperature can be input, but not both.

UNCLASSIFIED - UNLIMITED RELEASE 91

thermal_exo_var Specify the name of the Exodus nodal or element variable to
use for temperature. These values will be used for temperature dependent material
properties as well as applying thermal loads. The default value is ’TEMP’, but it can
be changed as in this example:

PARAMETERS
thermal_exo_var "DEGREE"

END

energy_exo_var This variable is identical to the “thermal_exo_var” above, but ap-
plies to cases where the energy density is input and must be converted to a temper-
atures. Either energy density or temperature can be input, but not both. The only
difference is that the energy density will be divided by the specific heat to arrive at
the temperature.

PARAMETERS
energy_exo_var "EDEP"

END

FilterRbmLoad Establishes a filter for rigid body components of the input load. The
options are described in the table. The default value is no filtering. The parameter
may need to be used together with the RbmTolerance and solver parameters. We note
that the FilterRbmLoad parameter is currently only supported for transient and
static solution cases. For other solution cases this parameter will have no effect on the
solution.

Option Description

NoFiltering skip all RBM filtering for the load
AllStructural apply filtering to all 6 structural RBM
RotationOnly apply filtering to rigid body rotation only

RbmTolerance Rigid body filters depend upon accurate rigid body modes. The appli-
cation checks the matrix product of the stiffness matrix to ensure that these vectors
are in the null space of the stiffness matrix. If any of the requested vectors are not in
the null space, the application terminates. The RbmTolerance provides user control of
the threshold for that error. The tolerance is computed as,

tolerance = ||[K]φr||/||[K]||

where [K] is the stiffness matrix, φr is a rigid body vector, and ||v|| represents the L2
norm. The default is 1e-6.

MatrixFloor Primarily a debugging option. The nearly zero terms in a matrix can be
removed using this parameter. Values below this floor are eliminated from the matrix.
This can reduce fill, but if used improperly too much of the matrix can be affected.
It can be important when running on different platforms, where round off can affect

92

the matrix fill, and make it difficult to compare solutions. This is a relative value, so
1.0E-6 would remove terms in the matrix that are a million times less than the largest
term. Default is zero.

MaxMpcEntries Soft limit on the number of mpc entries in any single multipoint
constraint. Normally the default will be sufficient, but large RBE3 type entries may
exceed this in rare cases. The limit is there to avoid errors reading the input, and
because such large constraints can consume memory.

Mpc_Scale_Factor Multipoint constraints equations are arbitrarily scaled. For ex-
ample, the constraint that two degrees of freedom have the same value could be written
as,

U1 − U2 = 0
or,[

1 −1
] [U1

U2

]
= 0

But, the weighting coefficients could just as easily be [1000 − 1000]. The constraint
equations are part of the stiffness matrix system, so it makes numerical sense to scale
these weights so they produce less round off.
By default, the MPC equations are scaled by Smpc = (min(Kd) + max(Kd))/2 where
Kd is the diagonal of the stiffness matrix. A user specified value may be set using
the Mpc_Scale_Factor keyword. A value of Mpc_Scale_Factor=1 results in
no scaling.

patch negative elements Sometimes (for a variety of reasons), the element stiffness ma-
trices generated in Sierra/SD may be negative. This is fairly unusual, but in those
rare cases where it occurs, it can be very detrimental to the solution. This is usually
manifested to the user by a large negative eigenvalue.
This option allows the analyst to request that Sierra/SD check every element stiffness
matrix for negative eigenvalues. Any found will be reported, and the matrix will be
made positive semi-definite.

eigen_norm Eigenvectors may be arbitrarily normalized. Three common approaches are
listed in Table 28. All methods retain orthogonality of the eigenvectors, but the nor-
malization differs. The default, mass normalization, is most commonly used as it
ensures that the inner products of eigenvectors with the mass matrix is identity. How-
ever, this normalization is not well suited to output visualization. The “visualization”
normalization mimics what is automatically done in MSC/Patran, and should provide
a reasonable visualization without rescaling each mode. In “visualization” normaliza-
tion, the maximum translational displacement is normalized to be less than 10 percent
of the maximum model extent, while also insuring that the model rotation remains
below 1 radian. Unit normalization ensures that the largest value of the eigenvector is

UNCLASSIFIED - UNLIMITED RELEASE 93

one. 1 A global variable, EigenVectScale, provides the scale factor by which the mode
was scaled.

Method Algorithm Comment
Mass φTi Mφi = 1 Default. Simplifies numerics

Visualization max(φi)=(model size)/10 Simplifies visualization
Unit max(φi)=1

Table 28: Eigenvector Normalization Methods

constraint_correction Ensure that each multipoint constraint generated is orthogonal to
all rigid body modes. This is useful for lofted surfaces. If the surfaces are tied as if
they were coincident, the constraints are incorrect, and result in a loss of rigid body
modes. See section 5.4 in the theory manual.

PARAMETERS
Constraint_Correction=yes

END

MFile_Format Most of our matrix data can be written as Matlab readable files. By default
these are written as sparse matrices, as functions. Other formats are also available.
The “full” format does not use the sparse methods (and is thus compatible with Octave
or other tools. Alternatively, the “3column” format can be used. In this format, the
file is loaded using the Matlab “load” command. The data is then converted to a
sparse matrix using the Matlab “sparse” command. The “3column” format may be
significantly faster in some cases, but it does require more user interaction. Figure 12
compares a simple example for the three formats. In all cases, the matrix symmetry
is the same. A fourth format, “CSV”, is also available for compatibility with other
external tools.2

RemoveRedundancy Redundant constraints cause most solvers to fail. Redundant con-
straints are often introduced when two surface pairs are tied next to each other, but
there are a variety of sources for these redundancies. Exact redundancies are always
automatically eliminated, but that is often not sufficient. This parameter removes
constraints when a node is applied as more than one slave relation, or if the node is
applied both as a slave and as a master. By default it is “true”.

1 The “unit” method of normalization computes max(φ), which is computed only on translational dis-
placement degrees of freedom. Note also that only displacements are renormalized. No effort is made to
renormalize element variables such as strains, stresses or energies. Thus, if these are requested in an eigen
analysis, they will not be consistent with the renormalized eigenvectors, but will retain mass normalized
values.

2 Note that the CSV format should be readable by Microsoft Excel, but there are often limits on the
number of columns that can be read.

94

Sparse_Function Full 3column

function s=Kssr()
s=[1 1 0.11
1 2 0.12
2 2 0.22];
s=sparse(s(:,1),s(:,2),s(:,3));

function
s=Kssr()
s=zeros(2,2);
s(1,1)=0.11;
s(1,2)=0.12;
s(2,2)=0.22;

1 1 0.11
1 2 0.12
2 2 0.22

Figure 12: Example MFile Format Results

RandomNumberGenerator The default random number generator, “rand”, is the stan-
dard generator available from system libraries. It should be the best random number
generator in terms of the quality implementation. In a few cases the analyst may want
a more repeatable random number generator, that is independent of the platform. The
“test” random number generator can be used in this case. It is not recommended for
general use, and the statistics of the generator are not well established.

MortarMethods Two mortar methods are available in Sierra/SD : standard and dual
(see 23). By default the dual method is selected as it is almost always more efficient
in memory use.

ComplexStress Most often, analysts do not want output of stress variables in frequency
response function analysis. Such output is complex, and huge volumes can be gener-
ated. Selecting “ComplexStress=yes”, along with “stress” in the echo section permits
output of this data. The default is “ComplexStress=no”.

num_rigid_mode Is used to signal to the linear solver that the system is singular and that
the singularity is associated with structural and/or acoustic rigid body modes. This is
used, for example, in the solution of statics problems without any essential boundary
conditions or frequency response analysis with the modal acceleration method. Where
possible, other methods should be used to eliminate the singularity. For example,
in eigen analysis a negative shift is recommended. Currently allowed values for this
parameter are 1 (acoustic mode only), 6 (structural modes only), or 7 (structural and
acoustic modes). We also note that when using the FilterRbmLoad parameter,
it is necessary to specify num_rigid_mode to correspond to the number of rigid
body modes that will be filtered. For example, if FilterRbmLoad was set to
AllStructural, then num_rigid_mode should be set to 6.

ignore_gap_inversion During the gap removal process the element quality can be af-
fected. If the element quality is affected enough the test will error out. To ignore the re-
duction of element quality caused by gap removal the parameter ignore_gap_inversion
can be utilized. The defult is set to false.

UseAnalystNodeMap The exodus database which contains all the topological information
in a finite element model is based on a 1 to N ordering of nodes, which provide the

UNCLASSIFIED - UNLIMITED RELEASE 95

connectivity to the elements in the model. This is often referred to as a “serial node
map.” Many meshing tools generate a mesh with an arbitrary ordering of nodes.
In some cases, the analyst may want to control that ordering of the nodes to help
in identifying particular nodes. If possible, a nodeset should be used for that, but
there are cases where output locations, or other quantities are identified with specific
nodes. That arbitrary, analyst controlled ordering is known as an “analyst node map”.
Visualization tools typically display the mesh using the analyst node map, and error
messages from Sierra/SD report issues with respect to that map. Because internally
the connectivity is expressed in terms of the serial map, there can be situations where
it is convenient to turn off the analyst map. This can be done with the command,

UseAnalystNodeMap=false

This is mostly useful for debugging purposes.

2.4 FETI

This optional section provides a way to input parameters specific to the Finite Element
Tearing and Interconnecting21 (FETI) solver, if used. If the FETI solver is not used, this
section is ignored. It includes the following parameters, shown in Table 29, and options. For
those options which are strings, only enough of the string to identify the value is required.
The defaults are shown in the following example.

FETI
rbm geometric
scaling no
preconditioner dirichlet
max_iter 400
solver_tol 1.0e-5
orthog 1000
rbm_tol_svd 1.0e-10
rbm_tol_mech 1.0e-8
projector standard // ignored in dp
level 1 // ignored in dp
local_solver sparse
coarse_solver sparse
grbm_tol 1e-6
prt_summary yes
prt_rbm yes
prt_debug 3
corner_dimensionality 6 // for dp only
corner_algorithm 3 // for dp only
corner_augmentation none // for dp only

END

96

Table 29: FETI Section Options

Variable Values Description
rbm Algebraic/Geometric rigid body mode method
scaling Yes/No scaling method
preconditioner LUMped/DIRichlet (both may be used)
max_iter Integer maximum number iterations
solver_tol Real
stag_tol Real Used to detect stagnation
orthog Integer max number of orthog. vectors
rbm_tol_svd Real SVD tolerance in rigid body modes
rbm_tol_mech Real mechanical tolerance in rbm
projector Standard/Q projector
level 1 feti1 (feti2 not implemented)
corner_dimensionality Integer 3 or 6 dofs/corner
corner_algorithm Integer 1, 3, 5-8
corner_augmentation String “none”, “subdomain”, “edge”
local_solver AUto, SKyline, SParse, solver for local LU decomp

single_sparse
precondition_solver Same as local_solver solver for preconditioner

Only used if using Dirichlet preconditioner
coarse_solver AUto, SKyline, SParse solver for coarse GTG problem

PSparse, single_skyline, (psparse is parallel sparse)
single_sparse, iterative

grbm_tol Real tolerance for rigid body
detection in GTG

prt_summary Yes/No print summary timer information
prt_rbm Yes/No print # rbm in each subdomain
prt_debug integer debug output. values 0=none, 1-3
bailout if set, the solver will continue even if the

solution is not converged at each
intermediate solve

mpc_method Integer 0=Lagrange multipliers everywhere
1=Local elimination where possible

UNCLASSIFIED - UNLIMITED RELEASE 97

2.4.1 Corner Algorithms

Corner selection is an important issue (and an ongoing research area) for FETI-DP.
Several algorithms are available. They all vary by the total number of corners picked in
the model for the coarse problem. The various algorithms are intended to give a little more
power to the advanced user. The more corners that are picked, the quicker the solution will
converge. The disadvantage being that there might not be enough memory available for
these corners, hence, Sierra/SD might abort because of this memory depletion. Memory
statistics can be observed and with experience, the advanced user can pick the optimal corner
algorithm. The possible choices for the various parameters are given in Table 30. All the
options for each corner parameter are listed such that the first option for each parameter
picks the least amount of corners.

Typically, corner algorithm 15 selects the minimal number of corner points. This is a
useful option to try if memory becomes an issue when running on large numbers of processors.
As noted above, smaller coarse grids increase the number of iterations to convergence.

Corner algorithm 14 selects three corners between along the interface between two neigh-
boring subdomains (Γij designates the interface between subdomain i and subdomain j).
The first node is selected as the node along Γij that touches the most subdomains. The
second node is the node that maximizes the distance between any two nodes along Γij. The
third node is selected to maximize the triangular area created by three non-collinear nodes
along Γij. Corner algorithm 14 will typically select less corner nodes than Corner algorithm
3.

Note that additional corner nodes can be placed in a special file,
extraNodes.dat. Nodes in this file will be added to the current corner
selection algorithm. While this method is seldom useful, it can help in
cases where an isolated element is causing catastrophic problems. The
format of extraNodes.dat is to simply put the global node numbers,
one per line, in the file.

2.4.2 Solves within Solves

The FETI algorithm employs three linear solves as part of the iterative solution strategies.
Each of these solves consumes memory and resources.

local. The local solve is a complete factorization of each subdomain independently. This
factorization requires that the subdomain be properly connected so the subdomain
stiffness matrix is nonsingular. Failure at this level results in a reported zero energy
mode (or ZEM), which causes the solver to fail. The size of this problem depends only
on the subdomain size, so increasing the number of subdomains decreases the local
solve memory.

98

Table 30: Corner Options

Parameter Option Description
Algorithm 0 Picks 1 corner per interface
Algorithm 1 Most robust algorithm
Algorithm 2 Picks 2 corners per interface
Algorithm 3 Picks 3 corners per interface
Algorithm 9 Picks all interface nodes debug only
Algorithm 14 Improved version of Corner Algorithm 3
Algorithm 15 Improved version of Corner Algorithm 0
Algorithm 16 No automatic corners.

(uses extraNodes.dat).
Algorithm 17 like 3, but add corners for conms
Algorithm 99 like 14, but add will not pick

corners on mpcs
Dimensionality 3 Fixes 3 translational d.o.f. per corner
Dimensionality 6 Fixes all d.o.f. per corner
Augmentation none no additional corners are selected
Augmentation edge Additional corners on interface edges

are selected. (Stiffness weighted).
Augmentation subdomain Additional corners per subdomain

are selected.

preconditioner. This is the least important of the solves, and seldom affects either the
robustness or memory of the solve.

coarse. The algorithm constructs a coarse solution space from the interface degrees of free-
dom. This solution has the properties of the original problem including rigid body
modes if they exist in the global problem. This solve will fail if singular, which can
occur if there is no negative shift, or if there are mechanisms in the original global prob-
lem. The coarse problem size increases with the number of subdomains, and depends
upon the corner algorithm selected.

Various options are available for the solution to these sub-problems. These are listed in
Table 31.

2.4.3 Levels of Diagnostic Output

The prt_debug flag takes various values from 0-4. Table 32 shows the various values
and their result. Note, for prt_debug value of 3, a file named corner.data is written.
The format is as follows:

Ncorners

UNCLASSIFIED - UNLIMITED RELEASE 99

Skyline. The most robust and oldest of the solvers, this method is also
usually the slowest, and it often uses the most memory.

Sparse. This is the workhorse solver, and should be the baseline for
any study.

Single_skyline. A reduced accuracy solution (using single precision
arithmetic), it may be used in cases of limited memory.

Single_sparse. A sparse single precision solution. It may have the
least memory footprint.

PSparse. Generally the coarse problem is solved redundantly on each
processor. This is both faster and more robust than parallel so-
lutions. The psparse option allows for a parallel solution to the
coarse problem. It may be faster and may use less memory than
the sparse method when the coarse problem size increases. It
is typically not recommended for solutions using less than 1000
processors as it is not as robust as the sparse method, and may
actually use more resources.a

a The interface for psparse is still under development. Currently you can set the
number of processors to use in the parallel direct solution by creating a file in the
current directory named “psparse_params”. The file must contain a line like the
following.

nproc 4
Where in this case we set the number to 4. Note that this interface is expected to
change in the future.

Table 31: Linear Solver Options

GlobalId LocalId SubdomainId Xpos Ypos Zpos
.
.
.
GlobalId LocalId SubdomainId Xpos Ypos Zpos

Ncorners is the total number of corners, GlobalId is the global id of the corner, followed by
the local id (LocalId), the subdomain on which the corner exists (SubdomainId), and the
coordinates of the corner (Xpos Ypos Zpos).

Other parameters that affect diagnostic output include the following.

prt_summary If Yes, summary performance information is reported to stdout.

100

Table 32: Prt_Debug Options

prt_debug value Result
0 No Output
1 Some Output
2 Lot of Output
3 Output + Corner.data file
4 Output + Corner.data file + Matlab files

prt_rbm if Yes, the number of zero energy modes determined on each subdomain will be
reported to stdout. If No, then only subdomains with a nonzero number of ZEMS are
reported.

2.5 CLOP

The CLOP solver may be specified in the solver section (see section 2.2.2). Parameters
for the CLOP solver can be specified in an optional “clop” section.1 Parameters are listed
in table 33. An example follows.

CLOP
max_iter=1000
solver_tol=1e-5
orthog=200
prt_summary=1
prt_debug=0
overlap=1

END

Comments:

The “orthog” option can be very memory intensive, and caution is advised when setting
this to a value above 200. Krylov_method 7 uses left preconditioned GMRES and is an
option for structural acoustics. Left preconditioning attempts to scale the acoustic and
structural unknowns appropriately, but this scaling can be sensitive to the conditioning of
the system matrix.

1Note that the “CLOP” section only specifies the linear solver parameters. The “solver=clop” specification
is required in the solution section.

UNCLASSIFIED - UNLIMITED RELEASE 101

Table 33: CLOP Section Options

Variable Values Dflt Description
max_iter integer 400 maximum number of iterations
solver_tol real 1e-6 relative residual convergence tolerance
krylov_method integer 0 0 - PCG,

1 - right preconditioned GMRES,
7 - left preconditioned GMRES
(an option for structural acoustics)

overlap integer 0 number of layers of overlapping elements
for preconditioner

orthog integer 200 number of stored search directions
(caution setting this above 200)

scale_option 0 0 - no scaling in factorizations
1 - use scaling in factorizations

prt_summary integer 1 output flag:
0 - no summary
1 - basic summary
2 - basic summary + condition # estimates

prt_debug integer 0 0 - no debug output
1 - basic debug output

bailout keyword If keyword is found, we try to complete the
solve even if errors are found.

coarse_solver direct solver for coarse GTG problem
3level

stag_tol real Used to detect stagnation
local_solver integer solver for local LU decomp

102

2.6 GDSW

The GDSW solver is presently the default solver that is used whenever parallel jobs
are executed, i.e. on two or more processors. The older version of the solver can still be
accessed using the version keyword (see Table 35), but users are advised to use the current
version whenever possible since the older one will be eventually phased out. Please report
any problems using the GDSW solver with the default solver parameters to the Sierra help
system at sierra-help@sandia.gov.

Parameters for the GDSW solver can be specified in an optional “GDSW” section.2 These
parameters are listed in Tables 34-37, and detailed descriptions of some of them are provided
below. Table 34 describes the basic solver parameters, while those for advanced usage are
given in Table 35. Parameters for supplemental output useful for diagnostic purposes are
described in Table 36. The GDSW Helmholtz solver is a relatively new capability, and the
relevant solver parameters are given in Table 37. Please report any problems using the new
Helmholtz solver to sierra-help@sandia.gov. For convenience, parameters and defaults
specific to the older version of the GDSW solver are provided in Appendix 5.

Table 34: GDSW Section Options (Basic)

Variable Values Dflt Description
max_iter integer 1000 maximum number of iterations
solver_tol real 1e-6 relative residual convergence tolerance
overlap integer 2 number of layers of overlapping nodes

for preconditioner
orthog integer 1000 number of stored search directions used

to accelerate solver convergence
prt_summary integer 3 output flag:

0 - no summary
1 - basic summary
3 - more detailed summary

solver_tol It is very important to control the accuracy of the solution. For all our linear
solvers, solver_tol is the requested accuracy of the computed solution as measured by
the relative residual error. In other words, the 2-norm of the residual vector for the
computed solution divided by the 2-norm of the right-hand-side force vector should be
no greater than solver_tol.

orthog One useful feature of both the FETI-DP and GDSW solvers is the ability to ac-
celerate convergence of their iterative methods by using stored search directions from
previous solves. This feature requires additional memory, but may significantly reduce

2Note that the “GDSW” section only specifies the linear solver parameters. The “solver=GDSW” speci-
fication is required in the solution section.

UNCLASSIFIED - UNLIMITED RELEASE 103

Table 35: GDSW Section Options (Advanced)

Variable Values Dflt Description
version integer 2 GDSW version (1 for older version)
krylov_method integer 1 0-pcg: preconditioned conjugate gradients

1-GMRES: right preconditioned GMRES
(generalized conjugate residual version)
2-lGMRES: left preconditioned GMRES
3-flexGMRES: flexible right precond GMRES
4-flexGMRES2: variant of FLEXGMRES
5-GMRESClassic: right preconditioned GMRES
(classic version)

default_solver integer 1 1-direct: Esmond Ng’s sparse direct solver
3 - Pardiso for Pardiso sparse direct solver
(only available with Intel MKL)
6-NoPivot: Clark’s templated sparse direct solver

num_rigid_mode note: see parameters, section 2.3.
max_numterm_C1 integer 100 maximum # of terms for Type 1 constraints
coarse_option integer 1 0-additive: additive coarse correction,

1-multiplicative: multiplicative “ ”
SC_option integer 1 0-no/1-yes: eliminate subdomain interior

unknowns using static condensation
weight_option integer 2 1 - to not use weighted residuals for

overlapping subdomain problems
coarse_size string auto coarse space reduction option

auto: automatic selection
small: use reduced coarse space
large: use larger coarse space

reorder_method string metis_edge metis, metis_edge, rcm, minimum_degree, none
num_GS_steps integer 1 number of Gram-Schmidt orthogonalization

steps for stored search directions
con_tolerance real 1e-10 singularity tolerance for processing constraints
con_row_tolerance real 1e-1 pivoting tolerance for processing constrains
scale_option 0 0 - no scaling in factorizations

1 - use scaling in factorizations
diag_scaling string none none - no scaling of operator matrix

diagonal - symmetric diagonal scaling
PTAP_solver integer 1 solver for conjugate gradient matrix

0-diag: diagonal (holds in exact arithmetic)
1-full: full ΦTAΦ matrix

bailout keyword If keyword is found, ignore errors
atLeastOneIteration integer 0 0-no/1-yes Iterate once at least
coarsening_ratio integer 1000 coarsening ratio for multilevel solver
minCoarseLevels integer 1 min number of coarse levels (for testing only)
maxCoarseLevels integer 1 max number of coarse levels
maxCoarseSize integer 3000 max size for coarsest problem
graphPartitioner integer 0 graph partitioner for multilevel solver

0-Parmetis, 1 PHG in Zoltan

104

Table 36: GDSW Section Options (Supplemental Output)

Variable Values Dflt Description
prt_coarse integer 0 0-no/1-yes: print coarse matrix
prt_constraint integer 0 0-no/1-yes: print constraint matrix
prt_memory integer 0 0-no/1-yes: print memory information
prt_timing integer 0 0-no/1-yes: print timing information
prt_interior integer 0 0-no/1-yes: print interior matrices
prt_overlap integer 0 0-no/1-yes: print overlap matrices
write_orthog_data integer 0 0-no/1-yes: write orthogonalization data to file

iterations. However, in some cases, the application of these vectors can lead to numer-
ical instabilities caused by loss of orthogonality. We recommend setting orthog=0 as
an early step in diagnosing any solver convergence problems.

krylov_method A variety of Krylov iterative methods are available as shown in Table 35,
but the default should work fine in most instances. If convergence problems arise,
we recommend switching to classic right preconditioned GMRES (krylov_method =
GMRESClassic) without the use of any stored search directions (orthog = 0).

num_rigid_mode note: see parameters, section 2.3. This keyword should not appear
in the GDSW solver block but rather the Parameters block.

max_numterm_C1 Constraints for the GDSW solver are classified by two types:

Type 1: simple constraints like those applied by an RBAR, tied contact, or rigid
surfaces.

Type 2: more complex, averaging constraints like those in an RBE3.

Type 1 constraints typically have a smaller number of terms, whereas Type 2 con-
straints may involve many terms in a single constraint equation. Solution of problems
with Type 2 constraints using Type 1 methods is possible and desirable if they are small
enough, but the memory requirements could be prohibitive if the number of terms N
in any constraint equation is too large. Specifically, storage of a dense matrix with at
least N2 terms would likely be required. The parameter max_numterm_C1 specifies
the maximum number of terms that can appear in a Type 1 constraint following a
constraint pre-processing step. Constraints with more than max_numterm_C1 terms
are then considered to be Type 2. The algorithm used to enforce Type 2 constraints
in the preconditioner is generally not as efficient as the one for Type 1 constraints.

coarse_size Is used to specify a reduction strategy for the coarse problem size. There is no
need to consider this parameter for problems run on less than a few hundred processors.
However, as the number of processors (subdomains) becomes large, solving the coarse
problem can become a bottleneck. The default (auto) automatically selects to use the
small coarse space only if the number of processors exceeds 1000. Specifying a small

UNCLASSIFIED - UNLIMITED RELEASE 105

rather than a large coarse space can often reduce the amount of memory needed by
the solver.

reorder_method Allows one to specify a reordering method for a sparse direct solver.
Currently it is only available for default_solver = direct (see Table 35).

num_GS_steps Is used in conjunction with the use of stored search directions. Its default
value is 1 (one orthogonalization step), but it can also be set to 2 to reduce the loss of
orthogonality of stored directions.

con_tolerance The GDSW solver uses a sparse LU decomposition algorithm to process the
constraint equations. This involves choosing pivot rows for numerical stability (much
like Gaussian elimination with partial pivoting). A constraint equation is deemed
linearly dependent if the magnitude of its pivot is less than con_tolerance.3 The
number of numerically redundant constraints in a model will typically be reduced as
the con_tolerance is increased.
Messages of the form,

min/max pivot for constraint factorization = some number
You may want to consider increasing the con_tolerance
parameter in the GDSW solver block.

are issued if the ratio of magnitudes of the smallest to largest pivots is less than 0.01.
This provides a recommendation to carefully examine the constraints in the model for
any potential problems.

scale_option There are presently two options for matrix scaling in the GDSW solver.
Including scale_option yes or, equivalently, scale_option 1 in the GDSW solver
block will apply symmetric diagonal scaling to all matrices prior to them being passed
to Esmond Ng’s sparse direct solver. Notice for parallel runs that both the subdomain
matrices and the coarse problem matrix will be scaled. In exact arithmetic, this option
should have no effect on the number of iterations for each solve of a parallel run.

diag_scaling Including diag_scaling diagonal in the solver block will apply symmetric
diagonal scaling to the original operator matrix and is not tied to a specific sparse
direct solver. In contrast to the scale_option parameter, this parameter can have an
effect on the number of iterations for each solve of a parallel run since GDSW is now
solving the scaled problem DADy = Db to a specified relative residual tolerance rather
than the original problem Ax = b (note substitution of x = Dy, where D is a diagonal
scaling matrix) for that same tolerance.

coarsening_ratio Is a target ratio between the number of subdomains prior to and after
coarsening by the multilevel solver. For example, if there are originally 8000 sub-
domains (processors) and coarsening_ratio is chosen as 100, then the number of
subdomains after coarsening will be 80.

3The constraints are normalized so that con_tolerance can be viewed as a dimensionless parameter.

106

maxCoarseLevels Is the maximum number of coarse levels allowed by the multilevel solver.
For a standard 2-level method this parameter has a value of 1.

maxCoarseSize Is the largest size for the coarsest problem allowed before another level
of coarsening is made. The solver parameter maxCoarseLevels takes precedence over
maxCoarseSize.

graphPartitioner Specifies which graph partitioning software to use when coarsening the
subdomains.

Additional details and troubleshooting strategies for the GDSW solver can be found
in documentation available on the compsim.sandia.gov website. Relevant documentation
includes GDSW 101 and the GDSW Solver Tutorial. We note that solver strategies for
dealing with poor mesh decompositions caused by the presence of constraints equations or
multiple physics (i.e. structural-acoustics problems) are describe in the GDSW Solver Tuto-
rial. These include rebalancing algorithms internal to the solver that can be accessed using
GDSW solver parameters. We hope this will provide a useful interim solution for challenging
problems prior to the deployment of alternative decomposition tools that effectively address
these issues prior to the solution phase.

UNCLASSIFIED - UNLIMITED RELEASE 107

Table 37: GDSW Section Options (Helmholtz)

Variable Values Dflt Description
Hprecond integer 5 Helmholtz preconditioner:

0-stiffness: Stiffness based
1-LG: Laird-Giles
2-custom: Custom
3-SL: shifted Lapalacian
5-operator: Operator with damping

orthogH integer 20 maximum number of stored search directions
for Helmholtz problems

max_previous_solutions integer 0 maximum number of previous solutions
used to accelerate convergence

precondUpdateFreq integer 10 frequency to update preconditioner as
as operator changes

viscous_damping real 0 viscous damping coefficient (see text)
structural_damping real 0.12 structural damping coefficient (see text)
alphaK real 0 custom precond stiffness coefficient (see text)
betaK real 0 custom precond stiffness coefficient (see text)
alphaM real 0 custom precond mass coefficient (see text)
betaM real 0 custom precond mass coefficient (see text)
krylov_methodH integer 5 same as krylov_method but

for Helmholtz problems
SC_optionH integer 0 same as SC_option but for Helmholtz problems

The custom option for Hprecond in Table 37 preconditions the matrix

−ω2(αM + iβM)M + iωC + (αK + iβK)K,

where ω is the circular frequency of excitation, i is the imaginary unit, and M , C and K
are the mass, damping, and stiffness matrices, respectively. With γ = structural_damping
and β = viscous_damping the non-zero parameters for the other preconditioning options
are αK = 1 for stiffness, αK = 1, αM = −1 for Laird-Giles, αK = 1, αM = 1, βM = −γ for
shifted Laplacian, and αK = 1, βK = γ + βω, αM = 1 for operator. Notice one should not
use the stiffness preconditioning option for ω near zero for structures with rigid body modes
since K is singular or near singular in this case.

108

2.7 ECHO

Results, in ASCII format, from the various intermediate calculations may be output to
a results file, e.g. example.rslt, where the filename is generated by taking the basename of
the text input file (without the extension) and adding .rslt as an extension. Output to the
results file is selected in the Sierra/SD input file using the ECHO section. An example
is given below, and the interpretation of these keywords is shown in Table 38.

echo
materials
elements
jacobian
all_jacobians
timing
mesh
echo
input
nodes
mpc

end

Note that if none is used, the order of selection is important. Thus, if you add none at
the end of the list, no output will be provided in the echo file. However, if you put none
nodes then only nodal summary information will be included. Entering nodes none
mesh only outputs the mesh information (nodes information is canceled by the none).

We remark that for virtual blocks, element variables such as element force are also written
to the results file. Since only Joint2G elements are currently supported as virtual blocks,
the only element variable that can be written at this time is the element force, eforce.

2.7.1 Mass Properties

The mass properties may only be reported in the echo section (i.e. at this time there is
no mass property report in the outputs section). The mass properties reports the total
mass, the center of gravity and the moments of inertia of the system. All are reported in the
basic coordinate system. Note that moments are about the origins, not about the center of
gravity. Masses are reported in a unit system consistent with the input, whether or not the
WtMass parameter has been used (see section 2.3).

An additional option of block may be used in the echo section to output the block wise
mass properties to the results file. Please note that the block wise mass properties, though
summed for all processors (if running on a parallel machine), are only output to the result

UNCLASSIFIED - UNLIMITED RELEASE 109

Table 38: ECHO Section Options

Option Description
acceleration nodal accelerations (better in output section)
debug debug output
all_jacobians jacobians for every element
block block wise mass properties (used only following mass)
displacement nodal displacements (better in output section)
echo dumb echo of input (for parse errors)
eforce element force for beams
elements element block info, i.e. what material,

element type, etc
ElemEigChecks element eigenvalues
energy element strain energy and strain energy density
eorient element orientation
feti_input
force applied forces (better in output section)
genergies global kinetic and strain energy sums
input summaries of many sections
jacobian block summary of jacobians
kdiag diagonal of stiffness matrix
adiag diagonal of dynamics matrix
mass mass properties in the basic coordinate system
materials material property info, e.g. E, G
mesh summary of data from the input Exodus file
mesh_error mesh discretization error metrics
NLresiduals turns on residual output per iteration

of the Newton loop for non-linear solution methods
nodes nodal summary
pressure applied pressures (better in output section)
npressure applied nodal pressures for random pressure
rhs Right Hand Side vector (better in output section)
subdomains “0:3:6,10” Controls which processor will output results file
modalvars modal force and amplitude for modal solutions (echo section)
timing timing and memory information
velocity nodal velocities (better in output section)
residuals residual vectors
tindex control time axis index
strain element strains at centroids
stress element stresses at centroids
vonmises von mises stress only
vmrs RMS quantities (random vibration only)
mpc mpc equations
all everything
none nothing

110

file from the first processor (processor 0). The block wise mass properties option, called
block, reports the number of blocks, the mass of each block, and the center of gravity of
each block along the x, y, and z axis. Please note that block may only be used in the
ECHO section just following the mass option as shown below.

echo
materials
elements
mass=block
nodes

end

If the keyword mass does not directly precede block in the ECHO section, then
Sierra/SD will abort with the following error.

Unrecognized "echo" option ’block".
Aborting.

Finally, we note that if the user requests bothmass andmass=block, then only the
global mass properties will be written to the result file. If only block-level mass properties
are desired, then it is only necessary to have the mass=block specified, as follows

echo
mass=block

end

2.7.2 Mpc

The keywordmpc instructs the code to write out the mpc equations to the result file. This
is a good tool for debugging purposes, as well as a check on the input deck. An example of
the output format is as follows

MPC
coordinate 0

25 P 1
106 P -1

// G = 0.000000
// the source is global

END

In this case, the mpc equation is constraining the acoustic pressure in nodes 25 and 106
to be equal in the global (default) coordinate system.

UNCLASSIFIED - UNLIMITED RELEASE 111

2.7.3 ModalVars

The ModalVars keyword generates text output containing modal forces and modal
amplitude for modal based superposition solutions including “modaltrans”, “qmodaltrans”,
“modalfrf”, and “qmodalfrf”. Two text files are written: “Qdisp.txt” and “Qforce.txt”. Each
line of the file contains data for a solution increment (a time or frequency step). For transient
solutions, each column corresponds to a mode in the solution. Because FRF solutions are
complex, two adjacent columns describe the complex modal amplitude (or force) for a mode.
The modal force is,

fqi
(tn) = φTi F (tn)

where F (tn) is the physical force at time tn, and φi is the modal vector for mode i. The
corresponding modal amplitude is defined by,

u(tn) =
Nmodes∑

i

φiqi(tn)

where u(tn) is the physical displacement and qi(tn) is the modal amplitude. The expressions
in the frequency domain are exactly the same, with frequency replacing time in the equations.

The text files may be loaded into matlab or MS/excel for analysis.

2.7.4 Subdomains

In parallel calculations, one results file is written per subdomain. Only data associated
with that subdomain are written to the file. Use the “subdomains” option to specify which
subdomains for which data will be written. The subdomains specification is made using
a Matlab like string. The string should be enclosed in quotation marks to group the terms
together. A range of values is represented by an initial value, an optional step, and a final
value. For example,

subdomains ’0:2:8’

selects subdomains 0, 2, 4, 6 and 8. Groups of such ranges may be combined using a comma.
The following selects subdomains 0, 2, 3, 4, 6, 8, 9 and 15.

subdomains ’0:2:8,3:3:9,15’

In addition, the keyword “all” selects all subdomains.

2.8 OUTPUTS

The outputs section determines which data will be written to selected output files.
All geometry based finite element results are written to an output Exodus file. The name

112

of this file is generated by taking the base name of the input Exodus geometry file, and
inserting -out before the file extension. For example, if the input Exodus file specification
is example.exo, output will be written to example-out.exo. When using a multicase solution
(section 2.1.1), the case identifier is used in place of “out”. More details are available in the
FILE section (2.11).

Various non-geometry based finite element data, such as system matrices and tables may
be available in Matlab compatible format, or in Harwell-Boeing format. These ASCII files
have the .m or .hb file extensions respectively. The base file names are derived from the type
of data being output. These files are generated in the current working directory.

In the following example, the mass and stiffness matrices will be output in Matlab format,
but the displacement variables, stresses and strains will not be output. All the various
options of the OUTPUT section are shown in Table 48. The next sections describe each
of the options and their results assuming an input file named example.inp and a geometry
file named exampleg.exo.

OUTPUTS
maa
kaa
faa

// displacement
// stress
// strain
// energy
END

2.8.1 Maa

Option maa in the OUTPUTS section will output the analysis-set mass matrix (if it
exists) to a file named example_Maa.m. If the harwellboeing option is selected, output will
also go to a file named example_Maa.hb. These are the file names for the serial version of
Sierra/SD . In the parallel version, an underscore and the processor number will precede
the “.m”, and a separate file will be written for each processor.

2.8.2 Kaa

Option kaa in the OUTPUTS section will output the analysis-set stiffness matrix to a
file named example_Kaa.m. If the harwellboeing option is selected, output will also go to a
file named example_Kaa.hb. These are the file names for the serial version of Sierra/SD .
In the parallel version, an underscore and the processor number will precede the “.m”, and
a separate file will be written for each processor.

UNCLASSIFIED - UNLIMITED RELEASE 113

2.8.3 Faa

Option faa in the OUTPUTS section will output the analysis-set force vector (if it
exists) to a file named example_Faa.m. If the harwellboeing option is selected, output will
also go to a file named example_Faa.hb. These are the file names for the serial version of
Sierra/SD . In the parallel version, an underscore and the processor number will precede
the “.m”, and a separate file will be written for each processor.

2.8.4 ElemEigChecks

Option ElemEigChecks will turn on the element output of the lowest eigenvalue, the
7th eigenvalue (commonly the first flexible eigenvalue), and the largest eigenvalue for the
element. The output will be stored in the Exodus output file. The element variable names
for the 1st eigenvalue, the 7th eigenvalue, and the maximum eigenvalue are ElemEig_1st,
ElemEig_7th, and ElemEig_max, respectively. Note: All 3-d and 2-d elements have this
capability. The Beam2, OBeam, Spring, Truss, Spring3, and RSpring el-
ements are also supported. All remaining elements will output values of zero. Finally, if
ElemEig_1st < -1e-12 ElemEigi_max, a negative eigenvalue warning will be printed.

2.8.5 Elemqualchecks

Option Elemqualchecks takes either one of three choices, on, off, or sum. The de-
fault is sum. If this option is on or sum, then all of the elements in the input file are
checked for quality using methods developed by Knupp (Ref. 24). Knupp uses a condi-
tion number to evaluate the health of an element. The following table shows the elements
currently checked and their acceptable ranges. The element quality reporting may also be
modified by the condition_limit parameter specified in the Parameters section (2.3).

Element Type Full Range Acceptable Range
Hex8 1−∞ 1− 8
Tet4 1−∞ 1− 3
Tria3 1−∞ 1− 1.3

TriaShell 1−∞ 1− 1.3
Quad4 1−∞ 1− 4
Wedge6 1−∞ 1− 5

If the option on is selected and the element’s condition numbers falls outside the acceptable
range, a warning message is printed. The value output with the warning is normalized by the
maximum number of the acceptable range for that element. If the option sum is selected,
only a summary is printed, reporting the maximum condition number of all elements in the
mesh.

114

In addition to these checks, solid elements are checked for negative volumes. This can
occur if the node ordering for the element establishes a “height” vector using the right hand
rule that is in the opposite direction of the actual element height. In other words, the nodes
should normally be ordered in a counter clockwise direction on the bottom surface of the
element. Some codes such as Nastran, are insensitive to this ordering. If element checks are
run, then Sierra/SD will correct (and report) any solid elements found to have negative
volumes. Without these corrections, the code will continue, but results that depend on these
elements are suspect.

It is strongly recommended that any Exodus file with negative volumes be corrected.

2.8.6 Displacement

Option disp in the OUTPUTS section will output the displacements calculated at the
nodes to the output Exodus file. The output file has the following nodal variables.

Variable Description
DispX X component of displacement
DispY Y component of displacement
DispZ Z component of displacement
RotX Rotation about X
RotY Rotation about Y
RotZ Rotation about Z

In addition, if the analysis involves complex variables (currently ceigen section 2.1.23.3,
frequency response analysis such as modalfrf or sa_eigen), then the imaginary vectors are
also included. The imaginary component of the vector has “Imag” prefixed to the name. For
example, the the imaginary component in the X direction is “ImagDispX”.

2.8.7 Velocity

Option velocity in the OUTPUTS section will output the velocities at the nodes to
the output Exodus file.

2.8.8 Acceleration

Option acceleration in the OUTPUTS section will output the accelerations at the
nodes to the output Exodus file.

UNCLASSIFIED - UNLIMITED RELEASE 115

2.8.9 Strain

Option strain in the OUTPUTS section will output the strains for all the elements to
the output Exodus file.

The following strains will be output for shell elements:

SStrainX1, SStrainY1, SStrainXY1 - strains in the top layer of the shell
SStrainX2, SStrainY2, SStrainXY2 - strains in the mid-plane of the shell
SStrainX3, SStrainY3, SStrainXY3 - strains in the bottom layer of the shell

Note: the top layer of the shell is determined by the ordering of the nodes of the shell. Also,
the strains are in the local element coordinate system defined by the ordering of the nodes.

The following strains will be output for volume elements:

VStrainX, VStrainY, VStrainZ, VStrainYZ, VStrainXZ, VStrainXY

Note: These strains are in the global coordinate system, not the local coordinate system.

For more information on stress/strain recovery, see section 4.

2.8.10 Stress

Option stress in the OUTPUTS section will output the stresses for all supported
elements to the output Exodus file. Only shell and volume elements are supported, i.e.
there is no stress output for beams.

2.8.10.1 Shell Stresses

The following stresses will be output for shell elements.

SStressX1, SStressY1, SStressXY1, SvonMises1 - top layer of the shell
SStressX2, SStressY2, SStressXY2, SvonMises2 - mid-plane of the shell
SStressX3, SStressY3, SStressXY3, SvonMises3 - bottom layer of the shell

Note: the top layer of the shell is determined by the ordering of
the nodes of the shell, and can be output by using the EOrient
output options (see section 2.8.25). Also, the stresses are in the
local element coordinate system defined by the ordering of the
nodes.

116

2.8.10.2 Volume Stresses

For volume elements, the stress is always output in the global coordinate system, not the

local coordinate system. The following stresses will be output for volume elements:

Variable Value
VStressX σxx
VStressY σyy
VStressZ σzz
VStressYZ σyz
VStressXZ σxz
VStressXY σxy
VonMises von mises stress

For more information on stress/strain recovery, see section 4.

2.8.11 VonMises

Option VonMises in the OUTPUTS section will output the von Mises stress for all
the elements to the output Exodus file. For volume elements, the output will be the von
Mises stress of the element. Surface elements define stresses on the top, center and bottom
layers. The output will be the maximum of these 3 values.

Note that the von Mises stress is computed and output as a portion of the output if full
stress recovery is requested. This option provides a mechanism for reducing output. Thus, if
full stress output is requested, then the VonMises will provide no additional output. In
other words, specifying both VonMises and stress in the outputs section is redundant,
but does not result in an error.

2.8.12 Stress = GP

An output specification of Stress = GP reports stress at the Gauss points of volumetric
elements. It is currently only available for Hex20 elements. Note that for a Hex20 there are
27 Gauss points with 6 stresses, for a total of 162 outputs per element.

The Gauss point ordering follows the description in the paper by Thompson.25 For the
convenience of the reader, that order is reproduced here.

UNCLASSIFIED - UNLIMITED RELEASE 117

number label suffix X Y Z
1 111 0 0 0
2 112 0 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 -A 0 0
20 012 -A 0 A
21 010 -A 0 -A
22 021 -A A 0
23 022 -A A A
24 020 -A A -A
25 001 -A -A 0
26 002 -A -A A
27 000 -A -A -A

Table 39: Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit
element is 2x2x2, with a volume of 8 cubic units.

118

2.8.13 VRMS

Option vrms will output computed root mean squared (RMS) quantities from a random
vibration analysis. These quantities are written to a separate output file. Quantities output
include the RMS displacement, acceleration and von Mises stress. In addition for the SVD
option, the D matrix terms which contribute to the von Mises stress are output4 (see section
2.1.19).

2.8.14 Energy

Option energy in the OUTPUTS section will place strain energies and strain energy
density in the output Exodus file. Note that the current implementation of strain energies
requires recomputation of the element stiffness matrix, which can be expensive.

2.8.15 GEnergies

OptionGEnergies in the ECHO orOUTPUTS section will trigger computation of
global energy sums for the results and output Exodus file, respectively. For the ECHO
case, the computation includes the following.

strain energy The strain energy is computed from uTKu/2 where u is the displacement
and K is the current estimate of the tangent stiffness matrix. Note that this may not
be complete for nonlinear solutions. Linear visco elastic materials have contributions
that will not be included in this sum.

kinetic energy Computed as vTMv/2. Here v is the velocity and M is the mass matrix.

work The work is defined as,
W (t) =

∫ x(t)

x(0)
F (x)dx

where F is the force and dx is the distance traveled. This can be restated as an integral
over time.

W (t) =
∫ t

0
F (τ)v(τ)dτ

where v = dx/dt is the velocity. We approximate this at discretized time tn as,

Wn ≈
n∑
i

Fivi∆t

Note that this is a sum over time using the simplest method possible. Because of
integration error, it may not be completely consistent with the other energies above.
For the OUTPUTS case, the total energy is written out at each time step.

4For a definition of D, see Reese, Field and Segalman.

UNCLASSIFIED - UNLIMITED RELEASE 119

2.8.16 Mesh_Error

The mesh_error keyword causes mesh discretization error metrics to be computed.
These are computed as output quantities, but the overhead associated with the metrics is
not negligible. Mesh discretization quantities depend upon the solution type, and are not
available for all solutions. Output is typically available as element quantities (usually in the
mesherr field). For some mesh discretization errors, a global quantity is also output.

Output Description
ErrExplicitLambda Relative error in λ.
ErrExplicitFreq Frequency error estimate (Hz)

We note that for eigenvalue analysis, relative errors are reported for the eigenvalue when
using the mesh_error keyword. Thus, for a given eigenvalue λ, the reported error is

ErrExplicitLambda = λh − λ
λ

(31)

This is more convenient since the analyst does not have to divide by the eigenvalues to
see the percent error. The global variable "ErrExplicitFreq" provides an absolute estimate
(useful in plots for example).

2.8.17 Harwellboeing

Option harwellboeing in the OUTPUTS section will output the mass and stiffness
matrices in Harwell-Boeing format to files with .hb extension.

2.8.18 Mfile

Option mfile will cause Sierra/SD to output various Mfiles like Ksrr.m, Mssr.m, etc.
These files are mainly used by the Sierra/SD developers for code maintenance and ver-
ification. Since many of these files can be quite large, caution should be exercised when
using this option on large models. An index of some of the files written using this option is
provided in Table 40.

2.8.19 Force

Option force in the OUTPUTS section will output the applied force vector to the
output Exodus file.

120

Table 40: Data Files Written Using the Mfile Option

Filename Description
Stiff.m Unreduced stiffness matrix including all

active dofs
Kssr.m Reduced stiffness matrix
Mass.m Unreduced mass matrix
Mssr.m Reduced mass matrix
LumpedMass.m unreduced lumped mass matrix
xxx_gid.m global IDs of the nodes
Fetimap_a.m Map to convert from G-set to A-set

The right hand side is the equation number.
The lhs index is 8*(node index)+coordinate

Dampr.m unreduced damping matrix (real components)
Dampi.m unreduced damping matrix (imaginary components)
xxx_accelNN.m G-set acceleration output of step NN
xxx_accel_aNN.m A-set acceleration output of step NN
xxx_afNN.m G-set applied force output of step NN
xxx_af_aNN.m A-set applied force output of step NN
xxx_dispNN.m G-set displacement output of step NN
xxx_disp_aNN.m A-set displacement output of step NN
xxx_presNN.m G-set nodal applied pressure of step NN
xxx_pres_aNN.m A-set nodal applied pressure of step NN
xxx_velocNN.m G-set velocity output of step NN
xxx_veloc_aNN.m A-set velocity output of step NN
modal_amp.m modaltransient output of mode amplitude vs time
ModalFv.m modaltransient output of generalized forces

• The xxx above refers to the input file name root.

• The G-set output is 8*(number of nodes).

• The file names above are for the serial version of
Sierra/SD . In the parallel version, an underscore and
the processor number will precede the “.m”. For example,
the reduced stiffness matrix becomes Kssr_0.m. There is
no output of a globally assembled, parallel matrix - it does
not exist.

• Some solution methods will not write all files. For exam-
ple, there are no mass matrices output in the solution of
statics. Generally, matrices are output in sparse symmet-
ric row format.

UNCLASSIFIED - UNLIMITED RELEASE 121

2.8.20 rhs

Option rhs in the OUTPUTS section will output the Right Hand Side vector from the
calculations. For statics and dynamics, we repeatedly solve equations of the form, Ax = rhs.
The rhs vector contains the applied forces and pressures as well as the inertial forces. Pseudo
forces introduced in preload (say by TSR) are also part of this vector. This output is useful
primarily for verification and debugging purposes.

2.8.21 EForce

Option eforce in theOUTPUTS section will output the element forces for line elements
(such as beams and springs) to the output Exodus file. Each two node, 1-dimensional
element will have 3 force entries for each node, for a total of 6 element forces per element.

The element force is not a stress or a strain, and should not be used as such. If you
want beam stresses, you may want to mesh that portion of the structure either as a shell
or a solid. Only limited stress output is available for beams. EForce is used primarily to
help understand the behavior of nonlinear line elements such as the Joint2G element (see
section 3.31). The output is actually the direct output of our internal force routine (which
is a nonlinear routine). It can be quite confusing to output these nonlinear forces in a linear
analysis.5

NOTE: The force returned is in the element (not global) coordi-
nate frame. No provision is made for output of moments.

2.8.22 Residuals

For most solution types, a linear solver is used to compute systems of the form Ax = b.
For direct serial solvers, these systems are typically solved to numerical precision. However,
with iterative solvers the solution is only approximate. Sometimes it is advantageous to
evaluate the performance of the solver. For example, regions with large residuals may be
candidate areas for mesh refinement, or may point to other mesh problems.

Eigen. For eigen analysis, the residual is (K − λiM)φ. The vector is not normalized by
the norm of φ, or any other quantity. A nodal residual work is also output. This is

5 Confusion arises because of the transformation to the element coordinate frame. For finite length
elements, we perform a transformation of the element coordinate frame based on the displacements. After
the coordinate frame is transformed, we express the element force in the new coordinate frame. This is done
for both linear and nonlinear analyses. The resulting element force is no longer linear in displacement. Zero
length elements do not have a rotated coordinate frame. Forces for zero length elements are linear in the
displacement.

122

the product φT (K − λiM)φ summed to the nodes, i.e. on a given node we sum the
contributing degrees of freedom. Again, the value is not normalized. Clearly with mass
normalized eigenvectors (which do not have units of length), the units of the residual
work are not energy, and the term may well be negative. The residual is output for
each mode.

Transient Dynamics. For transient analysis the residual reported is Au−b, where A is the
dynamics stiffness matrix (see section 1.1 of the theory manual). With a displacement
based Newmark-Beta integrator the dynamic stiffness is K+ 2

∆tC+ 4
∆tM . The residual

is output at each time step.

In addition to the residual vector, the norm of the residual is output as a global variable.

2.8.23 Resid_only

No longer supported. Use TIndex (section 2.8.24).

2.8.24 TIndex

It is occasionally useful to examine the residual after each iteration or solve. In the cases of
nonlinear transient, nonlinear statics or eigen analysis, there may be many solves per output.
Because of limitations in the output database format, it is very difficult (or impossible) to
intersperse the residuals from each solve with the usual solution output. However, it is
possible to select between the standard time step and an “iteration time step”. Note that
the Exodus database writes output for each “time step”. It uses the step number as an
index to the data, and only one such index is supported. When we substitute the iteration
number for the time step we can write the data properly, but once iteration has completed,
we may not write data using the other index (time step, or mode number). Should that
occur, we would have residuals from one iteration sharing the same time axis index with
transient data. The parameters for the option are listed in Table 41.

Keyword Application
standard use time step or mode number as index
iteration use the iteration count as index

Table 41: TIndex parameters
TIndex Example:

OUTPUT
disp
residuals
tindex=iteration // output on each iteration

END

UNCLASSIFIED - UNLIMITED RELEASE 123

TIndex makes sense only in solutions that require multiple iterations per solve. These
include eigen analysis and nonlinear solutions. In other solutions, it is ignored, and output
is provided at the standard time step.

NOTE: TIndex is really a debugging function. As such, we do
minimal checks. In some solutions (notably eigen), it is possible
to output data using both steps. However, the eigenvectors will
normally be properly written to the first m steps (where m is
the number of modes), and the residuals will be written once
per solve. There is no clear way to relate the residuals with the
eigenvectors.
NOTE: For eigen analysis, it is possible to output the the applied
forces at each solve. This is the only time that forces make
sense in an eigen analysis. These are really the load vectors
provided by the iterative eigenvalue scheme (ARPACK).

2.8.25 EOrient

Option eorient in the OUTPUTS section will output the element orientation vectors
for all elements. The element orientation is a design quantity that normally does not change
significantly through the course of an analysis. This output is provided to help in model
construction and debugging.

The orientation vectors are output as nine variables that collectively make up the three
vectors required for element orientation. The output variables and the associated meanings
for various elements are shown in tables 42 and 43 respectively.

Table 42: Element Orientation Outputs

Name Description
EOrient1-X
EOrient1-Y first orientation vector
EOrient1-Z
EOrient2-X
EOrient2-Y second orientation vector
EOrient2-Z
EOrient3-X
EOrient3-Y third orientation vector
EOrient3-Z

124

Table 43: Element Orientation Interpretation

Element EOrient1 EOrient2 EOrient3
Beam2 axial first bending (I1) 2nd bending (I2)
Shells Element X Element Y Normal
Solids Element X Element Y Element Z
Hexshell Element X Element Y thickness
ConM NULL NULL NULL

2.8.26 Pressure

Option pressure in the OUTPUTS section will output the applied pressure to the
output Exodus file as a sideset variable as well as a new nodeset variable.1 The addition
of nodeset pressure output enables restarts using the output pressure as an input load. For
most applications this also provides a useful tool for checking input loads.

2.8.27 NPressure

Option NPressure in the OUTPUTS section will output the nodal pressure to the
output Exodus file as a nodal variable. This output is only available for solutions that
introduce nodal pressure (currently only the random pressure loading).

2.8.28 APressure

Option apressure in the OUTPUTS section will output the acoustic pressure to the
output Exodus file as a nodal variable. For purely acoustic elements, this will result in one
degree of freedom per node, but for acoustic elements on the wet interface, this will result
in four degrees of freedom per node in the output Exodus file.

2.8.29 APartVel

Option apartvel in the OUTPUTS section will output the acoustic particle velocity
to the output Exodus file as an element variable. This is simply the velocity of the fluid
particles. It is computed in Sierra/SD as the gradient of the velocity potential. For purely
acoustic elements, this will result in three degrees of freedom per element.

1Prior to release 4.4 pressures were output as element variables. However, element variables cannot
capture pressure applied to more than one face of an element, instead representing only one of those pressures
with a single variable. Thus, element pressure output has been replaced entirely by sideset and nodeset
pressure output.

UNCLASSIFIED - UNLIMITED RELEASE 125

2.8.30 Slave_Constraint_Info

Many linear solvers are very sensitive to redundant or conflicting constraint requirements.
The Slave_Constraint_Info keyword requests output of constraint information on
the slave nodes. This information can be used to help prepare models with less sensitivity
to redundant constraints. Redundancy can be generated in any of the constraint types; here
we report only the information from tied surfaces and tied joints. The following information
is output when Slave_Constraint_Info is selected.

Num_Slave_Constraints indicates the number of sideset pairs in which a slave node
appears. Typically a number greater than 1 is an issue.

Slave_Node_Redundancy provides an indicator of slave nodes which may have redun-
dancy. A number above 0 indicates redundancy. The Slave_Node_Redundancy is
typically one less than Num_Slave_Constraints unless there are more than 3 indepen-
dent constraints for a specific sideset pair.2

Slave_Node_Gap indicates the distance a slave node must be moved to be placed on
the master surface. Many problems with constraints stem from surfaces that do not
properly match up geometrically.

Slave_and_Master indicates if a particular node is part of a master surface in one con-
straint relation and also part of a slave surface in a different constraint relation. A 1
means it is part of such relations and a 0 means it is not.

2.8.31 Statistics

For transient dynamics solutions only, summary statistical information may gathered and
output for the time history of variables listed in Table 44. Currently we gather information
about the mean and the standard deviation. Data is gathered at each time step, independent
of the frequency of output (i.e. nskip is ignored).

Because this is summary data, it is not convenient to append this data to the file used
for output of the time history. Another file is generated with the “-stat” tagging to store
that data.

Statistical data requires two keywords for output. Both “statistics” and the keyword
associated with that output quantity must be selected. To output statistics of the force, the
following output section is required.

OUTPUTS
statistics

2As may occur if a sideset pair is used in both a tied constraint and a slip contact, or tied joint.

126

force
END

Keyword Section Comment
Displacement 2.8.6

Velocity 2.8.7
Acceleration 2.8.8

Force 2.8.19 applied force
RHS 2.8.20 Right Hand Side vector at each load.

Table 44: Supported Statistical Data types for Transient Dynamics. Selection of these
quantities along with “statistics” results in an addition Exodus file containing mean and
standard deviation data.

2.8.32 KDiag

Option kdiag in the OUTPUTS section will output the maximum and minimum
values of the diagonal of the stiffness matrix as nodal variables KDiagMax and KDiagMin.
These are the max and min of the 7 variables associated with the 3 translational, 3 rota-
tional and 1 acoustic degree of freedom on each node. These values are primarily useful for
diagnostics purposes, where they may help identify regions of a model that have extremely
high stiffnesses. All 7 terms may be seen by outputting kdiag in the ECHO section.

Figure 13 illustrates the use of this option. Note how the center sections of the model
are highlighted by their stiffness terms. This tool is especially important for analyzing
some collections of beams. Since beam stiffnesses are proportional to 1/L3, it is common
to accidentally generate beams of extremely high stiffness, which can ruin the numerical
solution. See section 2.8.33 for a related diagnostic on the dynamics matrix.3

3 The stiffness diagonal and dynamic matrix diagonal depend to some extent on the linear solver used.
Domain decomposition solvers generally use Lagrange multipliers to eliminate constraints, while some sparse
solvers remove constraints through reductions of rows and columns of the matrices. Because the matrices to
be solved are different, the diagonals and conditioning of the matrices are also different.

UNCLASSIFIED - UNLIMITED RELEASE 127

Figure 13: Example KDIAG output.

2.8.33 ADiag

Option adiag in the OUTPUTS section will output the maximum and minimum
values of the diagonal of the dynamics matrix as nodal variables ADiagMax and ADiagMin.
Refer to the KDiag section, (2.8.32), for format information.

The “dynamic matrix” is the matrix which is solved by the linear solver. The “ADiag”
diagnostic can help identify regions of the model that may contribute to poor matrix condi-
tioning. Summary of a few of the dynamics matrix terms are listed in Table 45. Refer to the
theory manual for details of the matrix to be solved. Dynamics matrix output is available
for most solvers (including GDSW), and for some solution methods.

Solution Matrix Comment
eigen K − σM real eigen problem
transient K + 4

∆T 2M + 2
∆TC standard Newmark-Beta

statics N/A dynamics matrix is stiffness matrix
qevp N/A unimplemented

Table 45: Selected Dynamic Matrix Definitions

2.8.34 Warninglevel

We have partially implemented some control over the output of warning messages. This is
not implemented in general, but may be useful for some cases. The keywordwarninglevel

128

may be followed by either an integer, or a string.

Level Descriptor Comment
0 none minimal warning output
1 severe only severe warnings output
2 bad severe and bad warnings output
4 information all warnings (default)

Table 46: Warning Diagnostic Options

2.8.35 Precision

The binary results in Exodus files may be stored in either a lower or higher precision. For
most applications, lower precision is sufficient. This typically represents 8 digits of accuracy
which is more than any physical model of the structures warrants. However, in some cases, a
higher precision is appropriate. This can be very important for restarts in eigen analysis for
example, where it is necessary to maintain orthogonality of eigenvectors. See section 2.2.1.
The options are shown in Table 47.

Keyword Description
low Typically 4 bytes or about 8 digits accuracy. Default
high Typically 8 bytes or about 16 digits accuracy

Table 47: Output Exodus Precision Options

2.8.36 ddamout

The ddamout keyword is a single keyword that can be used to trigger Exodus output
(if used in the OUTPUT section), or history file output (if used in the HISTORY section).
We note , by default, that much of this data is written to .txt files in ddam analysis - however,
in many cases it is convenient to have it in Exodus files also.

Table 49 lists the nodal and element variables that are output when the ddamout
keyword is selected. There are a total of 8 nodal variables and 2 element variables.

Finally, we note a couple of additional details for output of ddam data.

• In parallel runs, the .txt file output will not include nodal variables, since that data
would not be usable in that form. Instead, that data could be written to the Exodus
file with the ddamout keyword.

• History output of ddam data will only write the nodal variables, not the element
variables. Element variable history output for ddam analysis is currently not in place.

UNCLASSIFIED - UNLIMITED RELEASE 129

Table 48: OUTPUT Section Options

Option Description
maa mass matrix in the a-set
kaa stiffness matrix in the a-set
faa force vector in the a-set
elemqualchecks on ‖ off ‖ summary,

default is summary
ElemEigChecks outputs first eigenvalue,

seventh eigenvalue, and the
largest eigenvalue

disp displacements at nodes
velocity velocity at nodes
acceleration acceleration at nodes
strain strain of element
stress stress of element
vonmises vonmises stress on element
stress = gp element stresses at Gauss points (huge)
vrms RMS quantities (random vibration only)
energy element strain energy and strain energy density
genergies global sum of energies
mesh_error mesh discretization errors
harwellboeing mass and stiffness matrices in Harwell-Boeing format
mfile Outputs various Mfiles (mainly for developers)
locations Outputs nodal coordinates and DOF to node map
force Outputs the applied force
rhs Outputs RHS of system of equations to be solved
pressure Outputs pressure load vector
eforce Outputs element forces for beams
eorient Outputs element orientation vectors
statistics Mean and Std deviation of some variables
warninglevel Control of warning messages

130

Table 49: Variables that are output from ddam analysis

Option data type Description
ddam_mdisp nodal variable ddam modal displacements
ddam_mvel nodal variable ddam modal velocities
ddam_macc nodal variable ddam modal accelerations
ddam_mfor nodal variable ddam modal forces
ddam_nrl_sdisp nodal variable ddam nrl-summed displacements
ddam_nrl_svel nodal variable ddam nrl-summed velocities
ddam_nrl_sacc nodal variable ddam nrl-summed accelerations
ddam_nrl_sfor nodal variable ddam nrl-summed forces
ddam_mvmstr element variable ddam modal vonmises stresses
ddam_nrl_svmstr element variable ddam nrl-summed vonmises stresses

2.9 HISTORY

All the results from the “OUTPUT” section can be output to a limited portion of the
model using a history file. Only those outputs described in Table 48 are supported. Note
that if the output is also specified in the OUTPUT section, there is little need to write
the data in the history file. The following output section options are ignored in the history
section because all history file output will be in the Exodus format.

• mfile

• harwellboeing

• kaa, maa, faa

• vrms

In addition to the output selection options, the history file section contains information
about the regions of output. The default is NO output selection. Selection may be for node
sets, side sets, a node list file (see section 2.13.3), or element blocks. Virtual blocks can
be included in this section. For example, one could output the element force in a virtual
Joint2G element. If side sets are selected, the side set selection is for the nodes associated
with that side set, not for the elements themselves. All nodal variables selected in the history
file will be output for all selected nodes. Selecting an element block automatically selects
the associated nodes in that block. The format for the selection uses a Matlab concatenated
range that of the subdomains selection in the ECHO (section 2.7.4). For example,

HISTORY
nodeset ’1:10,17’
sideset ’3:88’
nodeset ’8,15’ coordinate 4

UNCLASSIFIED - UNLIMITED RELEASE 131

block 5,6,3
stress
disp
nskip 10
flush 4

END

Any number of nodeset selections can be specified in the history section. Nodeset specifi-
cations may be followed by an optional coordinate entry. If a coordinate is specified, all
nodal results for the nodes in the nodeset are transformed to the specified coordinate system
before output to the file. If a particular node is identified in more than one specification,
the last specification is used for the output. The coordinate ID of nodes in the history file
may be printed out in the echo file by specifying nodes in the echo section of the input.
The coordinate ID will also be written to the history file (as a nodal variable CID) provided
any nonzero coordinate frames have been specified. Note that the coordinate keyword
for history section output will only work with nodesets, it is not supported for node list files,
sidesets, or blocks.

Only one block and one sideset specification is permitted in the history section.
Note that for block and sideset output specifications, the corresponding block and/or
sideset numbers should be specified as shown in the above example. Multiple block and/or
sideset numbers should be separated by commas or colons, but not spaces. For example, the
following specification for the history file would only output the element force in block 1,
but not in block 2.

HISTORY
block 1, 2
eforce

END

In order to get element force output for both blocks, one could use the following

HISTORY
block 1,2
eforce

END

Alternatively, quotes could be used without the comma

HISTORY
block ’1 2’
eforce

END

132

Output coordinate frames may only be specified on nodesets.

In transient dynamics solutions, user control of output step interval “nskip” and output
buffer “flush” operations are provided to increase efficiency of output. See section 2.1.32 for
examples. The history file respects the “nskip” and “flush” parameters set in the solution
block, but additional user control is provided for history files by inserting the nskip and
flush keywords in the history block. In that case, history files for all multicase solutions
will have output and buffer flushing at the intervals specified in the history section, and the
entries in the solution section will be ignored for history files.

Unlike subdomains, node set and side set IDs need not be contiguous in the Exodus
file. The selection criteria may identify nonexistent sets. These will be silently ignored. In
the above example, if the input Exodus file contains no node set with ID=10, it will not be
treated as an error. Node set and side set IDs in the history file will be consistent with the
corresponding Exodus input file.

Only one history file will be written per analysis. The name of the history file is derived
from the name of the Exodus output file, except that the extension is “.h”. Table 66 shows
the corresponding values for cylindrical and spherical coordinates.

While the history file provides a convenient means for transforming coordinates, its ap-
plicability may be somewhat limited when output in many coordinate frames is desired. In
particular, only a single history file is written in each analysis, and only one coordinate frame
may be output per node. See the coordinate section (2.27) for information on obtaining
the transformation matrices from each coordinate frame directly.

2.10 FREQUENCY

The frequency section provides information for data output from the modalFRF, direct-
FRF, shock, modalshock, and random vibrations solution methods. One frequency file is
written per analysis. The name of the frequency file is derived from the name of the Exodus
output file, except that the extension is “.frq”. The section format follows that of the history
section. As in the case of the history section, data can be written to a sideset, nodeset,
node_list_file, or a block. In the case of output to a block, the block can be a virtual block.
Thus, one could output element force on a Joint2G element. Solution methods that do not
write frequency domain output silently ignore the Frequency section.

The frequency section also includes the definitions of the frequency values for calculation.
A frequency section (with some output selection region) must be selected for any solution
method requiring frequency output. To fail to do so is an error, since the solution would be
computed and no output provided.

The frequency values may be specified using the methods specified in Table 50. The
methods are mutually exclusive, i.e. do not mix keywords from the “linear” method with

UNCLASSIFIED - UNLIMITED RELEASE 133

those of the “table” method. An example follows.

Table 50: Frequency Value Specification Methods

Method Keyword Description
freq_min minimum frequency (typically in Hz)

method=linear freq_max stop frequency
NF number of frequency intervals.

freq_step frequency increment (or use NF)
freq_min minimum frequency (typically in Hz)

method=log freq_max stop frequency
NF number of frequency intervals.

method=table table name of a 1D table (see section 2.30)

FREQUENCY
nodeset ’1:10,17’
sideset ’3:88’
block 5,6,3
disp
acceleration
freq_min=10 // starting frequency in HZ
freq_step=10 // frequency increment
freq_max=2000 // stop freq. This example has 201 frequency points.

END

For the “linear” and “log” methods, the frequencies are obtained by the following equation.

Fk =

 Fmin + k · Fstep for method=linear
Fmin exp (kD) for method=log

where D = 1/NF log (Fmax

Fmin
). If both freq_step and NF are specified, NF is used.

Output Region:

The controls in the frequency section also affect data written to the results (or echo)
file. In particular, the echo file contains data only for those nodes in the selection region of the
frequency section. Selection of a specific output (such as displacement or acceleration)
is independent. For example, you may echo only displacements, but write displacements
and accelerations to the Exodus frequency output file. The history section (2.9) has more
information on specification of the output region.

The seacas translator exo2mat may be used to translate the output into Matlab format
for further manipulation and plotting.

134

2.11 FILE

Disk files names are specified in the FILE section. The parameters for the FILE section
are,

Option Description
geometry_file Indicates which Exodus file to use

numraid Indicates how many raids are
available (for parallel execution)

sierra_input_file optional file name for transfer
of data from a sierra application

2.11.1 geometry_file

The geometry file is used for input of the mesh geometry including the nodes, elements,
connectivity and attributes. It is typically a binary Exodus file.

2.11.1.1 Multiple Processor: In a multiprocessor environment, the file name is deter-
mined by appending the “dot qualified” processor number and processor id to the geometry
file specification.4 For example, if the user specifies,

geometry_file=’temp1/example.par’

and there are 4 processors, then the following files will be opened.

temp1/example.par.4.0
temp1/example.par.4.1
temp1/example.par.4.2
temp1/example.par.4.3

In rare cases the control of raid controllers must also be specified, and an older method using
a C style format string must be used. This is described in Figure 14.

2.11.1.2 Single Processor: On a single processor, the file is not “spread”, and the full
file path is provided. For example, on a single processor, a FILE section may look like this.

4 In other words, the user specifies the path name of the first parallel file, but omits the processor count
information. This method permits specification of the file name independent of the number of processors
used.

UNCLASSIFIED - UNLIMITED RELEASE 135

The fully qualified geometry_file (or extended geometry file format) is deter-
mined by the number of raid controllers and the processor number. The actual
file name is computed by this command:
sprintf(filename,fmt, (my_proc_id%numraid)+1, my_proc_id);
where fmt is the string specified for the geometry file. The number of raid devices
is defined using the keyword numraid. For example,

FILE
geometry_file ’/pfs_grande/tmp_%.1d/junk/datafile.par.16.%.2d’
numraid 2

END

This will result in opening these files:

/pfs_grande/tmp_1/junk/datafile.par.16.00
/pfs_grande/tmp_2/junk/datafile.par.16.01
/pfs_grande/tmp_1/junk/datafile.par.16.02
...
/pfs_grande/tmp_2/junk/datafile.par.16.15

Figure 14: Extended Geometry File Specification: To be used when spread
files must be placed on multiple directories. In most cases the standard
format should be used.

FILE
geometry_file ’exampleg.exo’

END

Note:

• If the file name is not included in quotes, it will be converted to lower case.

• A single processor run, even using mpi protocol, will not append the number of pro-
cessors and processor ID to the file name.

• Appendix 3 shows the steps involved in the parallel execution of Sierra/SD .

2.11.2 sierra_input_file

The sierra_input_file may be used as a restart following a sierra calculation (using
Presto for example). This is an alternative to directly transferring the same data using
the sierra transfer services. The sierra_input_file has the same format and usage
as geometry_file, and can be used to transfer data in parallel or serial. See also section
2.1.27.

136

2.11.3 Additional Comments About Output

A text log or results file can be written for the run. Details of the contents of the results file
are controlled in theECHO section (see section 2.7). The results file name is determined by
the name of the input file, and will be in the same directory as the input text file, regardless of
whether Sierra/SD is being executed in serial or parallel. However, if executing in parallel,
using the “subdomains” option in theECHO section allows control of the number of results
files. For example, if running on 100 processors, up to 100 result files may be output. Using
subdomains “0:2” will only output three files, from subdomains 0, 1, and 2. The default
is to output a results file only for processor zero. The results file name uses the base name
of the input, with an extension of “.rslt”. In a parallel computation, the results file names
use the base name of the input file, followed by an underscore and the processor number,
then followed by the “.rslt” extension.

For calculations in which geometry based output requests are included (see section 2.8),
an output Exodus file will be created. The Exodus file is a binary file containing the
original geometry plus any any requested output variables. The output Exodus file name
is determined from the geometry file name. The base name of the output is taken from the
geometry file by inserting the text “-out” just before the file name extension. The output
Exodus file will be written to the same directory where the geometry file is stored. If
executing Sierra/SD on a parallel machine, the Exodus output files should be written to
the raid disks for reasonable performance.

2.12 Linesample

The line sample (linesample) section of the input file provides a means of evaluating
and outputting fields or internal variables at sampling points within a structure. These
sampling points are defined on a series of lines.

Section 2.1.33 discusses the primary application of line sample, verification of stress field
input to Sierra/SD from TSR. Line sample is used for energy deposition (see Two Ele-
ment Exponential Decay Variation Hex20 in the Verification manual18). Energy deposition
is interchangeable with supplying an applied temperature. And line sample is used for acous-
tics problems (for far-field processing (see 2.13.7.1 or How To26) for example with infinite
elements.27

Keywords for the line sample input are listed in the table below. An example follows.
Keyword Arguments
samples per line integer
endpoint 6 real numbers
format string

samples per line The number of sample points on each line. All lines will have the same

UNCLASSIFIED - UNLIMITED RELEASE 137

number of samples.

endpoint The endpoints of the line. There should be 3 real numbers for the XYZ location
of the beginning of the line, followed by 3 real numbers at the end. There can be any
number of endpoint entries.

format The format of the output file. Two output formats are current supported: exodus
and Matlab mfile. The default is mfile.

Output from the line sample is written to linedata.m for mfile output, or to linedata.exo
for Exodus format. There is no need to join this data for parallel runs. In those output files,
a nodal variable called Displacement will be created. The entries in this array correspond
to 3 displacement variables, 3 rotation variables, acoustic pressure, and generalized degrees
of freedom. For transient data, the time values are also output for each of these arrays.

2.12.0.1 LineSample Example:

LINESAMPLE
samples per line 5
endpoint 0. 0. 0. 1. 1. 1.
endpoint 0.0 0.5 0.5 1. 0.5 0.5
format exodus

END

2.13 BOUNDARY

Boundary conditions are specified within the Boundary section. Node sets, side sets
or node lists may be used to specify boundary conditions. Currently the coordinate
keyword is not supported for boundary conditions. 1 The example in Figure 15 illustrates
the method.

The descriptors for the displacement boundary conditions are,X,Y,Z,RotX,RotY,
RotZ, P, and fixed. Their application and meaning are listed in Table 51. An optional
equals sign separates each descriptor from the prescribed value. The value fixed implies a
prescribed value of zero for all degrees of freedom.

2.13.1 Prescribed Displacements and Pressures

In linear statics, one may prescribe a nonzero displacement by entering a value following
the coordinate direction. In the example above, the displacement for nodeset 1 is set to 0.1
in the X direction.

1 Robust BCs may be applied only in the 3 coordinate axes of the basic coordinate frame.

138

BOUNDARY
nodeset 1

x = 0.1 // constrain x=0.1 for all nodes in set
y = 0 // constrain y=0 throughout nodeset 1
RotZ = 0 // constrain the rotational dof about Z

nodeset 2
fixed // constrain all structural dofs in nodeset 2

nodeset 3
accelx = 0.3 // constrain the x component of acceleration,
function=1 // in nodeset 3, with the time-dependence
disp0 = 0.0 // given by function 1, and initial conditions
vel0 = 0.1 // given by disp0, vel0

sideset 2 // acoustic sideset
p = 0 // fixed acoustic pressure

// (also known as pressure release condition)
sideset 3 // acoustic sideset

pdot = 1.0 // constrain the time derivative of acoustic
// pressure for enforced accelerations

function = 2 // in sideset 3, with the time-dependence
p0=1.0 // given by function 2, and initial condition p0

sideset 5
absorbing // apply absorbing boundary condition on sideset 5

sideset 6
impedance_pressure = 0.5 // pressure impedance bc on sideset 6
impedance_shear = 0.5 // apply shear impedance bc on sideset 6

sideset 7
slosh = 0.6 // apply slosh boundary condition on sideset 7

sideset 8
infinite_element // apply infinite elements on sideset 8
radial_poly = legendre
order = 5
origin = 0 0 0

node_list_file=’clamped.nodes’
fixed

END

Figure 15: Example Boundary Section

UNCLASSIFIED - UNLIMITED RELEASE 139

Keyword Description
prescribed displacement keywords

X X Component of displacement
Y Y Component of displacement
Z Z Component of displacement

RotX Component of Rotation about X axis
RotY Component of Rotation about Y axis
RotZ Component of Rotation about Z axis
fixed Constrain all components of rotation and translation
P Acoustic pressure

prescribed acceleration keywords
AccelX scaling factor on X component of motion
AccelY scaling factor on Y component of motion
AccelZ scaling factor on Z component of motion

RotAccelX scaling of rotational motion about X axis
RotAccelY scaling of rotational motion about Y axis
RotAccelZ scaling of rotational motion about Z axis

disp0 unscaled initial displacement
vel0 unscaled initial velocity
Pdot derivative of acoustic pressure

Table 51: Boundary Enforcement Keywords

For acoustics, pressures may be fixed by specifying p = 0, as in the above example on
sideset 2. This corresponds to a pressure release condition.

For linear statics, there must be no function entry following the entry. Prescribed
displacements have the same limitations as prescribed accelerations described in the next
section. The load in this case is introduced by the prescribed displacement. However, the
loads section must exist (for error checking purposes) even if it is empty.

2.13.2 Prescribed Accelerations

In transient dynamics, the acceleration on a portion of the model may be prescribed
as a function of time. The descriptors for prescribed accelerations are, accelX, accelY,
accelZ,RotaccelX,RotaccelY,RotaccelZ, disp0, vel0, andPdot, as shown
in Table 51. A function must be used to apply the time-dependent boundary accelerations.
Optional initial displacement and velocity can also be specified; if not, they default to 0. In
the example above, the x acceleration of nodeset 3 will be prescribed as 0.3 × f(t), where
f(t) is defined in function 1. The initial displacement is given as 0, and the initial velocity
is 0.1. Currently, only accelerations can be prescribed. However, this does not preclude
problems with prescribed velocities and displacements, since these cases can be converted to

140

a prescribed acceleration by differentiation.

u(t) = a ∗
[∫ t

0

(∫ t

0
f(t)dt

)
dt+ t ∗ v0 + u0

]
(32)

In transient dynamics, the equivalent displacment can be calculated as shown in Equation
32. Here a is really a scale factor on motion, rather than just acceleration. Note that if no
function is listed, an error message will be generated.

In the case of an acoustic sideset or nodeset, the prescribed value is the first time deriva-
tive of acoustic pressure, denoted above as Pdot. This is because, internally, Sierra/SD
solves for the velocity potential, and the first time derivative of the velocity potential is the
acoustic pressure. Thus, by specifying the first time derivative of pressure, one is actually
prescribing the acceleration of the velocity potential.

An additional point to consider when applying prescribed accelerations is that the initial
velocity and displacement (denoted as disp0 and vel0), are also necessary to completely
define the boundary condition. These values account for the constants of integration ob-
tained when integrating the prescribed acceleration to obtain the corresponding velocity and
displacement on the sideset or nodeset. In the case of acoustics, only one initial condition is
needed (p0 which specifies the initial acoustic pressure), since only the first time derivative
of acoustic pressure is specified. Note that disp0, vel0, and p0 all default to 0 if not
specified.

There are some limitations with the prescribed acceleration capability, which are listed
in the following, and in Table 52. First, prescribed accelerations are not currently set up to
work with multicase solutions. Also, they only work in the standard (Cartesian) coordinate
system. Prescribed accelerations can be used in meshes that have nonlinear or visco elastic
elements, as long as the prescribed accelerations are not applied directly to the nonlinear
or visco elastic elements. Note that the nodes involved in prescribed accelerations cannot
coincide with nodes that are involved with mpcs.

Finally, note that when prescribed accelerations are used, they induce a load on the
structure. Thus, in many cases the loads section serves no purpose, unless an additional
external load is applied. In these cases, however, an empty loads block is still needed in
the input file. An error message will be generated if the input file has no loads section.

2.13.3 Node_List_File

To make it a little easier to apply boundary conditions, a node_list_file option is pro-
vided. In this option, an additional text file is provided which contains a list of global node
ids separated by white space. No comments, or other characters are allowed in the file, as
shown in Figure 15. The remainder of the boundary condition specifications are unchanged.

There are several limitations place on collections of nodes specified in this manner.

UNCLASSIFIED - UNLIMITED RELEASE 141

1. No support for multicase.

2. Only in basic coordinate directions.

3. Cannot be used on nodes attached to visco elastic elements.

4. Cannot be used on nodes attached to nonlinear elements.

5. Cannot be used on nodes connected to rigid elements or MPCs.

6. Load section is required, even if empty.

Table 52: Limitations for Prescribed Boundary Conditions

1. This is a rather inefficient method of supplying the nodes. It is recommended that
nodesets or sidesets be employed when practical.

2. No node distribution factors may be provided.

3. The output Exodus file will have no record of this list.

4. The global node numbers are the unmapped Exodus indices. This means that the
numbers go from 1 to N , where N is the maximum number of nodes in the model.
This definition is the only one which allows the same node numbering to be used in
both a serial and parallel file.

5. There is NO requirement that the nodes be sorted in the list, but repeating a node in
the list can have undefined results, i.e. don’t do it.

2.13.4 Nonreflecting Boundaries

Nonreflecting boundary conditions for acoustics and for elasticity may be specified using
the “absorbing" keyword.

This section allows the user to specify an exterior boundary for acoustic, elastic, or
coupled structural acoustic simulations. Once specified, first-order non-reflecting boundary
conditions are applied on this surface. The boundary is specified with a sideset. The sideset
can be placed either on acoustic or elastic elements - the code automatically determines
whether the sideset is placed on acoustic or elastic elements, and then applies the appropri-
ate boundary conditions. For acoustic elements, only pressure waves need to be absorbed,
whereas for elastic waves both pressure and shear waves need to be absorbed.

For acoustic elements, the absorbing boundary could represent an infinite fluid surround-
ing a structure. For elastic elements, it could represent an infinite elastic medium, such as
in a seismic problem.

An example of this syntax is given below

142

BOUNDARY
sideset 5

absorbing
radius = 1.0

END

The parameter "radius" specifies the radius of the sphere that defines the absorbing boundary.
For a planar absorbing surface, one can either specify no radius, or a very large radius (the
radius is actually equal to infinity for a planar surface). In those cases, the absorbing
boundary condition reduces to a plane-wave absorbing condition. We also note that the
radius parameter refers to the distance from points on the spherical surface to the center
of curvature, not to the origin of the coordinate system. Thus, it is independent of the
coordinate system that is specified. For example, one could shift the coordinates of the
nodes of the acoustic mesh by any constant, but the radius parameter would remain the
same.

2.13.5 Impedance Boundary Conditions

Impedance boundary conditions are partially reflecting and partially absorbing. Thus,
they are somewhere in-between a rigid wall and an absorbing boundary condition. They
reduce down to these special cases for certain choices of the impedance parameters.

An example syntax for an absorbing boundary condition is given below

BOUNDARY
sideset 6 // sideset on acoustic material

impedance = 0.5
sideset 7 // sideset on elastic material

impedance_pressure = 0.5
impedance_shear = 0.5

END

In this case, sideset 6 is attached to acoustic elements, and sideset 7 is attached to elasticity el-
ements. For acoustic elements, only one impedance parameter is needed, and it corresponds
to an impedance condition for pressure waves only (acoustic elements support no shear
waves). For elasticity elements, the impedance_pressure and impedance_shear
correspond to impedances for pressure and shear waves, respectively. This example specifies
that sideset 6 is to have an impedance of Z = 0.5ρc, where ρ is the density and c is the
speed of sound. Thus, the “impedance" parameter that is parsed in is simply the multiplier
on the characteristic impedance ρc. Similarly, for the elasticity element the pressure and
shear impedances would be ZP = 0.5ρcP and ZS = 0.5ρcS, where cP and cS are the speeds
of sound for the pressure and shear waves, respectively.

UNCLASSIFIED - UNLIMITED RELEASE 143

Currently, impedance boundaries are only set up to work with the standard character-
istic impedance ρc. Thus, specifying the “radius" parameter with an impedance boundary
condition will have no effect.

We note that if the impedance parameters are all set to 1.0, the problem reduces to the
absorbing boundary described in the previous section. If set to 0, the impedance condition
becomes a pressure-release boundary for acoustics and a free boundary for an elasticity
element. If set to a very large number, the impedance boundary condition reduces to a
rigid-wall condition for acoustics, and a fixed condition for elasticity elements.

2.13.6 Slosh Boundary Conditions

Slosh boundary conditions are applied at free surfaces that are effected by gravity. This
type of free surface is typically only important on the surface of a liquid such as water. It
adds an additional contribution to the mass matrix that results in “surface" wave modes.

An example syntax for an absorbing boundary condition is given below

BOUNDARY
sideset 7

slosh = 0.102 // 1.0/9.8 (m/s^2)
END

This specifies that sideset 7 is to have a slosh boundary condition. In this case, the slosh
coefficient needs to be set to 1

g
, where g is the gravity constant. Thus, for SI units, the

slosh coefficient is 0.102. Currently, slosh boundary conditions are only valid for acoustic
elements. Applying them to elastic elements will generate an error.

2.13.7 Infinite Elements

In this section, we describe how to use infinite elements for acoustics. These elements
serve as both high-order absorbing boundary conditions, as well as far-field calculators that
allow the analyst to compute the solution at far-field points outside of the acoustic mesh.
This latter step is a post processing step.

The infinite element specification begins with a sideset on the Exodus file of interest.
Currently, that sideset has to be a spherical surface or part of a spherical surface. Thus, a
full spherical surface, hemispherical surface, or a quarter of a sphere would all be acceptable.
Note that the infinite element accuracy will degrade if the element surfaces on the spherical
boundary do not adequately represent the spherical surface. The finite element surfaces
will be faceted, but enough elements on the boundary are needed to represent the spherical
curvature.

144

Parameter Description Options default
radial_poly the type of polynomial for radial

expansion
legendre legendre

order the order of the radial basis 0-19 0
source_origin the origin of the ellipsoid 3 real numbers 0 0 0
ellipsoid_dimensions radial dimensions of ellipsoid axes 3 real numbers 0 0 0
neglect_mass indicates whether to neglect infi-

nite element mass
yes or no yes

correct_mass whether to correct negative mass
terms.

yes or no yes

Table 53: Available parameters for the infinite element section

Once a sideset is identified for the infinite element surface, theBOUNDARY section
in the input deck would be modified as follows

BOUNDARY
sideset 1
infinite_element

radial_poly = legendre
order = 5
source_origin = 0 0 0
ellipsoid_dimensions 15 15 30
neglect_mass = yes

END

The parameters are summarized in Table 53. Currently, only Legendre polynomials are
available for the radial basis. In the future we expect to offer Jacobi and Lagrangian poly-
nomials also. The order of the polynomial can vary from 0 to 19. Order 0 corresponds to
a simple absorbing boundary condition. Higher orders will be more accurate, but also more
computationally expensive. The source point is the location of the center of the spherical
surface that the infinite elements emanate from. This would coincide with the origin of a
spherical coordinate system that is anchored to the spherical surface of the infinite elements.

The ellipsoid_dimensions parameters indicate the axial dimensions of the ellipsoid in the
global coordinate system. They are specified as ellipsoid radii rather than ellipsoid diameters.
In the case of a sphere, all 3 parameters are equal and set to the radius of the sphere. These
parameters are currently required, and an error will be generated if they are not specified.

The neglect_mass keyword indicates whether to neglect the mass matrix contribu-
tions from the infinite elements. Note that for a spherical surface, the mass matrix contri-
butions from an infinite element are identically zero. However, when numerically generated,
small entries will be present in the mass matrix, and thus an option is provided to include
these terms in the analysis. It is recommended to neglect the mass in most cases, and thus
this keyword would typically be set to yes. By default, neglect_mass is set to yes.

UNCLASSIFIED - UNLIMITED RELEASE 145

Note that infinite elements only require a specification of a sideset on the surface of
interest. No elements need be set up explicitly on this interface. Internally, Sierra/SD
constructs virtual elements and virtual nodes that define the actual infinite elements, but
the analyst need not build a layer of elements on the boundary of the sideset.

In the time domain, infinite elements can be used in serial or parallel. In the frequency
domain (i.e. for directfrf) solutions, only the serial capability is currently functioning.
The parallel capability will require enhancements to the parallel complex solver.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation,
rather than a standard Galerkin formulation. As a result, nonsymmetric system matri-
ces are encountered with infinite elements. This restricts the solver options to the GDSW
solver for time domain and either the GDSW or the SUPERLU solver for frequency domain
(i.e. directfrf).

We note that infinite elements can be used either with purely acoustic problems, or with
coupled structural acoustics. The formulation is the same, and the GDSW solver is required
for the solutions since nonsymmetric matrices are encountered.

2.13.7.1 Far-Field Postprocessing The infinite element formulation allows the analyst
to compute the response outside of the acoustic mesh as a postprocessing step. The response
can be computed at any point outside the mesh, and for any period of time. Currently, the
linesample capability is used to write out the far-field data (see section 2.12). This data
may be written in a readable Matlab format, which can easily be read in to create plots of
the data.

The output will be written to a Matlab m-file with the name “linedata.m” or “line-
data.exo”, depending on which option is selected for output. One file is written per analysis
(results are joined analogous to history file output). For example, reading this file in will
create vectors FieldTime and Displacement. The acoustic pressure is found in the
Displacement1 variable.

We note that the infinite element output in the far-field is always given with respect
to some time shift. Details of this are given in the theory notes on infinite elements. The
shifted times are included in the linesample output for the analyst to use. These allow for
plotting the time histories against the appropriate time vectors.

The shifted time output is available in the linesample output in a nodal array called
FieldTime. The dimension of the FieldTime array is the same dimension as the acoustic
pressure output, since each node in the linesample output has its own FieldTime array. One
FieldTime array is available for each sample point in the linesample output.

The following command in Matlab will plot the pressure for the first sample point.

FieldTime = nvar09;
pressure= nvar01;

146

plot(FieldTime(1,:),pressure(1,:))

We note that the linesample points defined in the LINESAMPLE file can contain
points that are both inside and outside of the acoustic mesh. For points that are inside of
the mesh, the FieldTime array for each node will be identically equal to the time array. For
points outside of the acoustic mesh (i.e. inside of the infinite element mesh), the FieldTime
values will be larger than the corresponding time values in the Time array, since the acoustic
waves will take additional time to reach these far-field points.

2.14 LOADS

Loading conditions are specified within the loads section. The following example illus-
trates the method.

LOADS
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
coordinate 11
force = 0. -1 0

nodeset 7
point_volume_vel = 1
scale = 1.0
function = 1 // time history of dV/dt,

// where V is the volume of the source
body

gravity
0.0 1.0 0
scale -32.2

body
thermal_load
function = 1

sideset 7
pressure 15.0

sideset 12
traction = 100.0 20.0 0.0
coordinate 0

sideset 13
acoustic_vel 1.0
function = 1

sideset 14

UNCLASSIFIED - UNLIMITED RELEASE 147

pressure = 1
follower=yes

node_list_file=’force.nodes’
force=1.0 0 0.
scale = 100.
function=2

END

Loads may be applied to node sets, side sets, node lists (see section 2.13.3) or the entire body
(in the case of inertial loads). Pressure loads may be applied using side sets. The pressure
is always normal to the surface. All loads applications are additive. Forces should not be
applied to sidesets.

The components of each load specification are listed in Table 54. The syntax followed is
to first define the region over which the load is to be applied (either nodeset, sideset,
node_list_file or body). Each such region defines a load set. For each such definition,
one (and only one) load type may be specified. However, any region definition (except
node_list_file) may be repeated so that forces and moments may be applied using the
same node set.

Following the definition of the load type, a vector (or scalar in the case of pressure loads)
must be specified, except in the case of a thermal load, where no vector or scalar multiplier
is needed. The vector is the load applied in the basic coordinate frame unless a coordinate
frame is also specified (see section 2.27).

2.14.1 Scale Factors for the Load

The total load on each degree of freedom is the product of the load vector, the scale factor,
and the nodeset distribution factor found in the Exodus file. For pressures and tractions,
the load is also multiplied by the area of the face. Note that in some cases the nodeset
distribution factor may be zero.2 In that case, the total applied force will also be zero.

2.14.2 Sideset Loading

The pressure, acoustic_vel, and acoustic_accel loadings may only be ap-
plied to side sets. The total pressure is the product of the scale factor, pressure (scalar) and
sideset distribution factors. By default, pressure loads are not follower loads, i.e. pressures
are applied in the direction of the undeformed element normal for the entire simulation. The

2 Because the nodeset distribution factors are part of the Exodus file, and may be difficult to check,
errors in the distribution factors are very common. Analysts are urged to be very careful to examine the
distribution factors.

148

follower keyword may be applied to user defined functions if a follower load is required.
See section 2.14.5 for follower stiffness specification.

If the pressure loading is NOT normal to the sideset, the traction capability should be
used. NOTE: Pressure will act on a surface in a compressive sense, while a traction can be
specified as any vector which will act on the sideset specified in the direction given by the
triple values specified after traction. Also, traction loads are applied on the faces of the
shell elements in a piecewise manner, i.e., the traction load acting on a face of the element is
assumed constant. If the distribution factors on the nodes of the element vary, the average
of the load (element per element) is assumed.

Traction loads may be specified in either the local element coordinate frame, or in a
coordinate frame projected onto the surface.

The local element coordinate system is used if no coordinate frame is specified in the
input. This implies that there can be a mesh dependence on which direction the forces will
be applied. The third component of the vector will always correspond to the surface normal
(and hence will be applied as a pressure), but the first two components correspond to the
two surface tangent vectors, which depend on the local element node numbering. Thus,
some trial and error may be needed to determine which directions need to be specified in
the traction loading section in order to get the forces in the right direction. We highly
recommend using a coordinate projection.

If the analyst provides a coordinate frame with the traction definition, then that frame
is projected onto the surface of each element. Figure 16 illustrates that projection. Like the
local element frame, the third coordinate of the traction is always normal to the surface.3 4

2.14.3 Spatial Variation

Variation of the load over space is accomplished using node set or side set distribution
factors.5 If these are provided in the Exodus file, the load set is spatially multiplied by
these factors. The total loading is the sum of the loads for each load set summed over all
the load set regions.

3 This transformation is singular when ê2× n̂ is zero. Near that location, the transformation is modified.

~p2 = n̂× ê1
~p1 = ~p2 × n̂

4This transformation is dependent on the direction of the element normal, n̂. If ê3 is in the opposite
direction of n̂, the ê2 direction will be preserved, but the p̂1 direction will be the opposite of ê1. This
preserves the right hand rule.

5 User defined functions may also be used. See section 2.28.12.

UNCLASSIFIED - UNLIMITED RELEASE 149

Section Keyword Parameters

Region
(defines application area)

body
nodeset
node_list_file
sideset

-
id
filename
id

force val1 val2 val3
moment val1 val2 val3

Load Type gravity val1 val2 val3
(defines application method) pressure value

point_volume_vel value
point_volume_accel value

acoustic_vel value
acoustic_accel value

traction val1 val2 val3
thermal_load -
energy_load -

optional specifications
Coordinate Frame
(for vector loads only)

coordinate id

Scale Factor Multiplier scale val1
Function
(Required for transient analysis)

function id

Follower
available with user functions,
2.28.12

follower yes/no

Table 54: Load Specification Keywords

150

n̂

n

p

e

e

e

1

p
2

1

2

3

^
^

^

^

^

^

C

C

user

p

Consider a user defined coordinate
frame, Cuser defined by the basis vec-
tors,

(ê1, ê2, ê3)

A surface normal, n̂, is defined by the
element normal. The user defined co-
ordinate frame is projected onto the
surface as follows.

~p1 = ê2 × n̂
~p2 = n̂× ~p1

When normalized, (p̂1, p̂2, n̂) form the
basis for a coordinate frame, Cp, on the
surface of the element in which to ap-
ply the tractions.

Figure 16: Coordinate Frame Projection for Tractions

2.14.4 Required Section

When prescribed accelerations are applied in the boundary section (2.13), they induce
a load on the structure. In these cases the loads section may serve no purpose, unless an
additional external load is applied. In these cases, an empty loads block is still needed in
the input file. An error is generated if the input file has no loads section.

2.14.5 Follower Stiffness

This section allows the user to specify a follower stiffness corresponding to a an applied
pressure load. When using follower loads, pressure loads applied to structures will “follow”
the structure during deformation, always remaining normal to the surface where they are
applied. As such, the applied force due to a pressure load depends on the deformed state,
and this induces a follower stiffness matrix that contributes to the overall stiffness matrix of
the structure.

The boundary where the pressure is applied is specified with a sideset. Also, the mag-
nitude of the applied pressure field must be specified, as shown in the example below. The
follower stiffness matrix scales linearly with the magnitude of the applied pressure.

LOADS
sideset=1

UNCLASSIFIED - UNLIMITED RELEASE 151

pressure = 10.0
follower=yes

END

In the above example, sideset 1 is used to denote the surface where the pressure is applied.
The parameter "pressure" specifies the magnitude of the applied pressure field.

2.14.6 Acoustic Loads

The acoustic_vel, acoustic_accel, point_volume_vel,
point_volume_accel loading conditions are specifically designed for acoustic
elements, and thus may only be applied to acoustic elements. In all cases, a time function
is required that defines either the time or frequency dependence of the loads.

The acoustic_vel and acoustic_accel keywords specify the fluid velocity and
fluid acceleration in the normal direction of the element faces in the sideset, respectively.
Note that these are the counterparts to the pressure load for structures in the sense that
they are Neumann boundary conditions.

We note that the acoustic_vel and acoustic_accel approaches should yield
the same acoustic response, provided that the acoustic_vel time function is precisely
the time integral of the acoustic_accel function. This time integration must include
the constant of integration. If the two time functions for acoustic_vel and acous-
tic_accel are complementary in this way, the acoustic pressure output from these ap-
proaches will be the same up to first order. They are not exactly the same since the time
derivative of velocity potential is needed to generate the acoustic pressure for output, and
that time derivative is only first-order accurate.

An example of the acoustic_vel keyword is given below.

LOADS
sideset 1

acoustic_vel = 1.0
function = 1

END

In this case, sideset 1 is given a prescribed normal velocity of amplitude 1, with a time
dependence given by function 1.

Currently, a given load case cannot contain both an acoustic_vel and an acous-
tic_accel input. Only one or the other can be specified in a given load case, though for
a multicase solution the acoustic_vel and acoustic_accel inputs could be present

152

in separate load cases. We also note that for coupled structural acoustics, only the acous-
tic_vel keyword is applicable. For analysis involving only acoustic elements, either key-
word can be used.

The point_volume_vel and point_volume_accel keywords prescribe an
acoustic point source on a nodeset. This force is the product of the fluid density with the
first and second derivatives, respectively, of volume of the source. The function for the
point source contains the time history of the first (for point_volume_vel) and second
(for point_volume_accel) time derivative of volume.

Since the code scales by density in the internal calculations, there is no need to multiply
the time history of volume by density to get the acoustic force. Thus, for point sources
the scale parameter is typically set to 1.0, unless a direct scaling is desired. The units of
the input time functions for point_volume_vel and point_volume_accel are
volume per unit time and volume per unit time squared, respectively. The density need not
be multiplied by these functions, since the code is already dividing by density internally (see
the theory notes on structural acoustics for a more detailed discussion.)

Currently, the point acoustic source is only implemented for the time domain (transient)
calculations, but we expect it to be extended to frequency response methods in the near
future.

2.14.6.1 Example

LOADS
nodeset 1
point_volume_accel = 1.0
function = 1

END

FUNCTION 1
type LINEAR
name "volume_acceleration"
include inc/volume_acceleration.inp

END

In this case, nodeset 1 would consist of a single node, and the file "volume_acceleration.inp"
would contain the second time derivative of volume velocity of the source, with units of
volume per time squared. Note that the amplitude of the point source is taken to be 1.0,
and that it does not include the density multiplier.

The sign conventions of the acoustic_vel, acoustic_accel,
point_volume_vel, and point_volume_accel keywords are important.
For the acoustic_vel and acoustic_accel cases, the equations of motion are given
by,

UNCLASSIFIED - UNLIMITED RELEASE 153

1
c2 p̈−∆p = −

∫
Γ
ρq(a · n)dΓ (33)

or, in discrete form,
Mp̈+Kp = f (34)

where ρ is the density, q is the surface shape function, a is the acceleration vector on the
surface, n is the normal to the surface, and Γ is the portion of the surface where the loading is
defined. M , K, and f are the mass, stiffness, and discrete force vectors. We denote a ·n = an
as the normal component of acceleration. We also note that this force has a negative sign in
front of the integral, which comes from the variational formulation. This implies an inverse
relationship between surface acceleration and acoustic pressure. Thus if the acceleration is
oriented in the same direction as the normal, then an will be positive, and thus the total
force vector will be negative. Intuitively, this makes sense, since if the acceleration is in the
same direction as the surface normal, mass will be ejected from the acoustic space, causing
a decrease in pressure. Conversely, if the acceleration is oriented in the opposite direction
as the surface normal, then an will be negative. This will cause the total force vector to be
positive, resulting in a positive pressure. This makes sense, since in this case mass will be
added to the acoustic space, causing an increase in pressure.

For the point_volume_vel and point_volume_accel loadings, the equa-
tions of motion are given by

1
c2 p̈−∆p = ρ

∂2V

∂t2
δ(x− x0) (35)

or, in discrete form,
Mp̈+Kp = f (36)

where ∂2V
∂t2

is the second derivative of the volume change with respect to time, and δ(x− x0)
is the Dirac delta function that makes the term zero everywhere except where x = x0. We
note that V is the volume of fluid added to the surrounding acoustic space, not the volume
of the point source per se. Thus, the sign of the acoustic pressure will be related to the
sign of ∂2V

∂t2
. A positive ∂2V

∂t2
would result in a positive acoustic pressure, implying that fluid

mass is added to the surrounding acoustic space. Conversely, if ∂2V
∂t2

is negative, mass will be
subtracted from the acoustic space, and thus a negative acoustic pressure will result.

Although the previous examples involved time functions that did not very spatially, the
acoustic loadings can be used with spatially-varying time functions. This is accomplished
using theReadNodal andReadSurface functions which are described in more detail
in sections 2.28.9 and 2.28.11.

2.14.7 Thermal Loads

The thermal_load option is used in conjunction with a spatial temperature specifi-
cation for the structure. The temperature distribution can either be specified via the input

154

Exodus file, or on a block-by-block basis, as described below. Based on the temperature
distribution, a thermal load is computed and then applied to the structure.

If the solution method is selected to be statics, the thermal_load option will provide
the thermal load necessary to solve the thermal expansion problem. If the solution method
is transient dynamics, the same thermal load will be applied as in the statics case, but
modulated by the function that is specified below the thermal_load keyword. This
corresponds to a thermal shock analysis. Thus, for a transient dynamics problem that
includes damping, and with a function that is equal to 1.0 for all time, the transient analysis
would eventually converge to the same solution as obtained in the statics analysis, which
would be the solution from a classical thermal expansion analysis. On the other hand, for a
transient dynamics problem with a thermal_load in which the associated time function
is not equal to 1.0, the thermal load will be scaled according to that time function. For
example, in the case of a mesh that has block-by-block values of temperature T_current
specified in the input deck, and a thermal load function that ramps up from zero to one, the
actual thermal load applied to the structure will be multiplied by that time function. In this
case, the full thermal load will only be seen after the ramp in the time function is completed.

If it is desired to apply a thermal preload to a structure, we generally recommend using
a static analysis rather than a transient analysis, since in the latter case the preload
that will be computed will be a dynamic preload that will oscillate around the static preload
solution. If damping is used, this dynamic preload will converge to what would be obtained
from using a static analysis. However, in some cases such as when rigid body modes are
present, a transient analysis may be the only option for applying the preload.

The temperature field can either be read from an Exodus file, which would typically
be the result of a thermal analysis, or it can be specified on a block-by-block basis in the
input deck. For temperature fields that change from element to element, the temperatures
must be read in from the Exodus input file. For more uniform temperature distributions,
it is more efficient to specify them block-by-block in the input deck. Note that when using
thermal loads, the temperature data is expected to either be in the mesh (exodus) files, or
specified using the input deck (i.e. block-by-block). We note that when temperatures are
specified both in the Exodus file as well as on a block-by-block basis in the input deck, the
input deck values take precedence.

Sometimes it is of interest to output the stress after a thermal load analysis. In this case,
the stresses that are output to the Exodus file will be correct in the case of block-by-block
temperature input, but they will not be correct if the temperatures are read in from the
Exodus file. This is due to a known bug in the way that thermal stresses are computed.
Thus, if thermal stresses are needed, the only method that can currently generate them is
by specifying the temperatures on each block in the input deck.

If temperatures are specified using the input deck, then each block must be given its
own temperature. In the example below, there are 2 blocks, and each is given a different
temperature.

UNCLASSIFIED - UNLIMITED RELEASE 155

BLOCK 1
material 1
T_current 100

END
BLOCK 2

material 2
T_current 200

END

Note that if Tcurrent is specified for some blocks and not for others, the code will error out.

When temperatures are read in from the Exodus file, the material properties can be
specified as temperature-dependent. This implies that each element will have different ma-
terial properties. More details are given in the section on temperature-dependent material
properties.

For thermal statics or thermal transient analysis, each material block must be given two
additional parameters, the reference temperature, Tref = Tref, and the coefficient of thermal
expansion, αt = alphat. These parameters are defined via the thermal strain, which is given
by

εthermal = alphat (Tcurrent − Tref) (37)

An example is the following.

MATERIAL 1
E 10e6
nu 0.3
tref 300.0
alphat .001
density 0.1

END

The defaults for tref and alphat are both 0.0. This implies that if they are not specified,
then the material will not contribute to the thermal analysis (see equation 37).

Shell and beam type elements are not supported in thermal analysis. If used in con-
junction with a thermal load, their contributions to the thermal expansion analysis will be
ignored. This shortcoming is expected to be corrected in a future release.

The default Exodus file labels for the temperatures are shown in the table below. This
is the default variable format that Sierra/SD looks for. However, it is also possible to
read in element variables and variables of different names. Using the keyword ther-
mal_exo_var in thePARAMETERS section (2.3) allows you to specify the name
of the temperature variable in the Exodus file. Sierra/SD will first look for a nodal vari-

156

able of this name, but if there isn’t one, it will look for an element variable. If no element
variable is found by the given name, an error will be generated.

Name Definition
TEMP the nodal temperature

The thermal_load load case can be used in a multicase solution method. In that
case, the stresses and internal forces from the thermal analysis are used as initial conditions
for the next case. For example, for a fixed-fixed cantilever beam that is subjected to a
uniform temperature increase, the beam will undergo a stretch due to the thermal static
analysis, and will have residual stresses. If this beam were then subjected to an eigen analysis
in a subsequent case, the modes would be modified due to the geometric stress stiffening.
Conversely, for a fixed-free beam, there would be no residual stresses and thus no effect on
subsequent cases. Note that the displacements from thermal analysis are not carried over to
subsequent cases. Thus, to get the total displacement from a thermal analysis followed by
transient, one would need to add the displacement results from the two cases separately.

The thermal_time_step keyword must be specified in the PARAMETERS
block, to specify which time step of the previous thermal analysis should be used to extract
temperature data. The following gives an example.

PARAMETERS
thermal_time_step 10
thermal_exo_var "TEMP"

END

The Exodus files can contain multiple time steps of temperature data. The user can
select which time step is to be used for defining temperature data in Sierra/SD, using the
keyword thermal_time_step. In this example the tenth time step will be read in
from the Exodus file. The default value for the thermal_time_step is 1.

The following is an example of some of the input for a thermal statics analysis.

SOLUTION
statics

END

PARAMETERS
thermal_time_step 10

END

LOADS
body

thermal_load
END

UNCLASSIFIED - UNLIMITED RELEASE 157

2.14.8 Energy Deposition Input and Loads

Input from energy deposition are very similar to thermal loads (section 2.14.7). These
loads are specified when energy is deposited directly in the structure as with an X-ray deposi-
tion. For consistency with other applications, the energy is defined as specific energy, i.e. the
energy per unit mass. Such direct energy deposition is converted to a change in temperature
after which thermal strains and loads are computed exactly as for the thermal_load
approach.

Energy is converted to a change in temperature using the specific heat of the material
(see section 2.26.9).

Ẽ = Cv∆T

where Ẽ is the specific energy of the body, Cv is the specific heat capacity for constant
volume, and ∆T is the change in temperature.

The energy load is specified using the keyword energy_load. All other parameters
are identical to thermal_load. Note that by the nature of these loads there is often an
exponential decay in energy as a function of depth. For this reason, it is very advantageous
to specify the loads at Gauss points, particularly when using higher order elements.

Energy may also be used as an input for thermally dependent material properties. To
ensure that the energies are converted to temperature before determining the material prop-
erties, identify the variable name from the exodus file with the energy_exo_var and
energy_time_step keywords, rather than the thermal_exo_var and ther-
mal_time_step keyword.

2.14.9 Consistent Loads

The loads for all of the 3-D and 2-D elements are calculated in a consistent fashion when
a pressure load is applied. For more details on the implementation, see the programmer’s
notes. It is very important that consistent loading be used. This is especially true for shell
elements where the consistent loading is required to properly apply rotations.

158

2.14.10 Pressure_Z

Depth dependent pressure loads may of course be applied using a user defined function.
To simplify this loading condition, depth dependent pressure may also be applied using the
pressure_z keyword. An example is shown in Figure 17. This loading is applied only in
the basic coordinate frame, and the analyst must specify that the pressure is either “below”
or “above” an offset to the coordinate axis. The pressure is always proportional to the depth.
In the example of Figure 17, the pressure is zero at x = 5, 10 at x = 4, 20 at x = 3 and
so on. At depths above the “waterline”, the pressure is zero. Any of the basic coordinate
directions (x, y, or z) may be used as a reference.

// depth dependent pressure for a waterline at x=5.
LOADS

sideset 2
pressure_z 10.0 below x = 5

sideset 20 // air, but silly
pressure_z 1e-4 above x = 5

END

Figure 17: Depth Dependent Pressure Load Example. This load section applies a pressure
to sideset 2 which is proportional to the distance below x = 5.

2.14.11 Static Loads

Static loads only require the definition of the load region and load keyword (e.g. force)
with it’s accompanying parameters. However, a function (including a user defined function,
see 2.28.12) may be used as well. In this case, the function will be evaluated at time t = 0.

This changed following release 2.3. Previous versions did not
allow any function definitions for static loads, and any loads
with temporal functions would not be applied to static analysis.

2.14.12 Time Varying Loads

Additional options provide the capability of varying the load over time. The loads options
include,

• scale with one parameter provides a scale factor to be applied to the entire load set.
Only one scale may be provided per load set.

UNCLASSIFIED - UNLIMITED RELEASE 159

• function. A time varying function may be applied by specifying a function ID. Only
one function may be applied per load set. The function is defined in the function
section (see section 2.28 on page 203). The loads applied at time t for a particular
load set will be the sum of the force or moment vectors summed over the nodes of the
region and multiplied by the scale value and the value of the time function at time t.

NOTE:
If no function is applied for a particular load, then the function
is defined as 1.0 for all time. All loads will be applied to the
transient solution, regardless of whether an explicit time function
is defined.

This is in marked contrast to the loads application defined up
to release 2.3 of Sierra/SD , where transient loads required an
explicit temporal function definition, and static loads prohibited
it.

2.14.12.1 Reading Loads from Exodus Data Loads may be read in from previous
analyses when stored in the input exodus file. These are read using an appropriate function.
See sections 2.28.9, 2.28.10, and 2.28.11 for functions which read data on nodal values, on a
node set and on a surface respectively.

2.14.13 Random Pressure Loads

Input for random loads can be complicated, though the loads are not uncommon and are
important for many applications.1 This type of random pressure loading is developed for use
of direct transient loading typical of a turbulence load on a hypersonic vehicle. Throughout
the development, we maintain a concept of flow direction, and correlation distances that
may be different in flow and transverse directions. By computing the random pressure fields
as part of the time evolution, we avoid the need to compute these complex quantities before
the run. The approach requires a linear solve at each solve to compute the loads.

The most general type of input is the correlation matrix, which is the inverse Fourier
transform of the spectral density matrix. The RandomPressure load option provides
a simplified means of specification of the loading. The material in this section is consistent
with and builds on section 2.28.6.

Section 4.4 in the theory manual28 details the approximations involved in the implemen-
tation. These approximations are summarized in Figure 18.

The random loading is a component of the loads section. An example is shown here, and
described in Table 55.

1 A hypersonic vehicle is a prime example of a random loading. Turbulence provides a time varying
loading which has a limited spatial and temporal correlation on the surface of the hypersonic vehicle.

160

The simplified correlation matrix is not general, but may be use-
ful for a large class of problems. It has the following limitations.

1. The system must be time stationary.

2. The correlation function must be separable (a product of
temporal and spatial correlations).

3. The same PSD shape must apply throughout the entire
hypersonic vehicle body. The PSD may be scaled as a
function of z, but there may be no change in the shape.

4. The PSD must have some sort of cutoff. The time inte-
gration must occur above this cutoff frequency.

5. By default, the temporal function is represented by a sinc
function. This may be replaced by a user defined temporal
function.

Figure 18: RandomPressure Loading Approximations

LOADS
sideset 22

randompressure
correlation_length_z = 2.0 // required
correlation_length_r = 0.67 // required
cutoff_freq = 16.8 // required
correlation_function = 20 // defaults to sin(x)/x
psd_scale_function = 10 // defaults to Sigma=1
ntimes = 5 // defaults to 5
coordinate 1 // defaults to basic frame
MinimumNodalSpacing = 1.0e-5 // defaults to 1.0e-8
numberOfInitializationSteps = 100 // defaults to 5

END

Details for the parameters to the correlation matrix input are described below.

correlation_length_z Spatial decay in the flow direction, Lz. The flow direction is the
Z axis of the coordinate frame. The correlation function C(∆Z) is proportional to
exp (−∆Z/Lz), where ∆Z is the distance between two points in the flow direction.

Correlation_Length_R Correlation_length_r is the spatial correlation distance in
the radial or transverse direction. The correlation function is proportional to
exp (−

√
(∆x2 + ∆y2)/Lr).

Cutoff_freq The cutoff frequency, Fc is very important to the operation of the random-
pressure algorithm. No energy may be found in the PSD above this frequency. The

UNCLASSIFIED - UNLIMITED RELEASE 161

Parameter Type Default Comment
correlation_length_z real required spatial decay in flow direction
correlation_length_r real required spatial decay orthogonal to the flow
cutoff_freq real required cutoff frequency
correlation_function int sin(tωc)

tωc

psd_scale_function int Σ(z) = 1
ntimes int 5
coordinate int 0 defaults to basic frame
MinimumNodalSpacing real 1.0e− 8 smallest allowable inter-node spacing
Random_Seed int ignore random number seed
numberOfInitializationSteps int 5 iterations to improve initial spatial distribution

Table 55: Random Pressure Inputs

time integrator may not sample the system lower than this frequency, i.e. dt < 1/Fc.

NTIMES The matrix is proportional to the number of time values assembled, and affects
the interpolation as described in equation 4.49. Typically only a small number of
terms are required. Note that there are 2 ∗NTIMES + 1 terms in the sum, and the
dimension of the correlation matrix grows commensurately. The number may depend
on the interpolation time step and on the shape of the PSD. Default=5 (which produces
11 terms in the sum).

CORRELATION_FUNCTION The temporal time function, whose argument is (t1 −
t2). By default this function is sin(x)/x, with x = πFc(t1 − t2). It must be an even
function of the argument.

PSD_SCALE_FUNCTION provides a means of scaling the power spectral density as
a function of flow direction. This type of input requires that the PSD have the same
shape at all locations, but the value may be scaled. Scaling the PSD effectively scales
the standard deviation of the pressure. Default is no scaling. The function must be
positive for all values of the coordinates.

COORDINATE is an optional coordinate frame that is used to define the flow direction.
The z component of that frame is the direction of flow. By default, the basic frame is
used.

MINIMUMNODALSPACING Some models can contain co-located nodes on the sur-
face where the random pressures are to be applied. This can cause the correlation
matrix to be singular, since the repeated nodes would result in two identical rows in
the correlation matrix. The MinimumNodalSpacing keyword allows the ana-
lyst to specify the smallest inter-node spacing (absolute) that is allowed on the surface
where the random pressure is being applied. Any nodes that are closer than that toler-
ance will be treated as identical in the correlation matrix manipulations. The Exodus
file and corresponding nodal output will not be changed. This will avoid a singular
correlation matrix, but does not alter the mesh database.

162

NUMBEROFINITIALIZATIONSTEPS The initial spatial pressure distribution may
appear unrealistically correlated. This problem becomes more likely with mesh resolu-
tion. The issue is mitigated by taking a few steps of the stochastic iterative process. If
issues are evident with the initial distribution, this parameter could be increased. The
cost of increasing this parameter is comparable to the cost of an implicit time step.
Default=5 (values lower than 5 are not recommended).

OMEGA_C Deprecated. Use Cutoff_freq.

ALPHA_Z Deprecated. αz = 1/Lz.

BETA_T Deprecated. βt = 1/LR.

The computation of the random pressure loads depends on matrix factorizations (see 4.4
of theory manual28). However, the Cholesky matrix factorizations are defined only if the
correlation matrix is (numerically) nonsingular. At this time, the code stops with an error
if this occurs. A common cause of this error is using too many time steps ntimes with too
small a time step. For this reason, the condition number of the temporal correlation matrix
is always evaluated, and, if it is singular, the cutoff frequency is decreased. In this case the
warning message

Singular temporal correlation matrix
Increasing Delta_T to ...

will be printed in the result file for processor 0. Another source of ill conditioning is the
use of very large correlation lengths correlation_length_z or correlation_length_r, or a very
fine mesh.

For this reason inverse condition number estimates are printed in the result files. An
inverse condition number is the relative distance to a singular matrix, and is denoted Rcond,
for reverse condition number. In double precision, an Rcond below 10−12 indicates that the
factorization may fail. The precise statements in the results files are

TemporalCorrelationMatrixRcond = ...
Estimated SpatialCorrelationMatrixRcond = ...
Estimated CorrelationMatrixRcond = ...

2.14.14 Frequency Dependent Loads

Frequency dependent loads may be applied for frequency response analysis. The real
part of these loads is applied exactly as above with the understanding that the functions
referenced now apply to frequency not time. Frequency dependent loads may include an
imaginary component. This is done by prefixing the load types listed above by the letter
“i”. Thus the imaginary part of the load uses these load types.

UNCLASSIFIED - UNLIMITED RELEASE 163

For Complex Analysis
Option Parameters
iforce val1 val2 val3
imoment val1 val2 val3
igravity val1 val2 val3
ipressure val1
itraction val1 val2 val3

A function should be associated with each such load. An example follows.

LOADS // example for FRF analysis
nodeset 1

force=1 0 0 // the real part of the load
function=11

nodeset 2
iforce=1 0 0 // the imaginary part of the load
scale .707
function=12

END

2.14.15 Rotational Frames

Often when analyzing rotating structures, it is convenient to perform the analysis in the
rotating frame where the structure is not undergoing large displacement. Analysis in that
frame introduces “fictional” or “pseudo” forces with centrifugal,2 Coriolis and Euler contri-
butions. These are termed “forces”, but the contributions are introduced from operating in
a noninertial coordinate frame. For the theory, see section 4.2 in the theory manual. The
associated keywords are found in Table 56.

Option Parameters
angular_velocity vel1 vel2 vel3
angular_acceleration accel1 accel2 accel3
coordinate coordinate id

Table 56: Rotating Frame Parameters

The Galerkin framework used for finite elements, introduces matrices associated with these
pseudo forces. In addition to the standard mass and stiffness matrices that arise in linear

2There is often confusion about the description of the “centrifugal” or “centripetal” term. The centripetal
force is a real force applied in the inertial coordinate frame which causes an object to travel in a circular
path. The centrifugal force is the pseudo-force that appears from inertial terms in a rotating coordinate
frame.

164

LOADS
body

angular_velocity = 0.0 2.0 0.0
coordinate = 1

body
angular_velocity = 0.0 0.0 3.0
coordinate = 3

END

Figure 19: Application of centrifugal and Euler forces. The loads above apply an angular
acceleration of 3 radians/s2 in the Z direction of coordinate frame 3, and an angular velocity
of 2 radians/s in the Y direction of coordinate frame 1. Angular acceleration is applicable
only in statics.

structural dynamics, force-based matrices are also common. These include follower stiffness
matrices from applied pressures, and Coriolis/centrifugal matrices in rotating structures.

Figure 19 provides the corresponding Sierra/SD input for a rotational load applied to
a body. The centrifugal stiffness and Coriolis coupling matrices are both derived from the
rotational velocity of the structure, which uses the keyword angular_velocity. The
vector angular velocity components are specified after the angular_velocity keyword.

An angular acceleration, Ω̇, may also occur, as when an aircraft carrying a weapon makes
a rapid course correction. This angular acceleration results in a pseudo-force, called the Euler
force, that is tangent to the angular acceleration vector. Application of angular acceleration
is restricted to linear and nonlinear statics analysis in Sierra/SD.

In many instances, the angular acceleration and angular velocity are applied indepen-
dently for static loads analysis. The may seem a bit of a contradiction. But it is useful
and very similar to the static loads analysis of a rocket that provides envelope survivability
information during launch.

Left Hand Side contribution

Angular velocity introduces both left hand side matrices and right hand side force vectors.
The algebraic expression for dynamics can be written as follows.

(Km +Kg +Kcen)u+ (C + Ccor) u̇+Mü = fextern + fcen (38)

where,

Km is a material matrix,
Kg is the geometric stiffness matrix correction,

UNCLASSIFIED - UNLIMITED RELEASE 165

Kcen is the centrifugal softening term,
C is the damping/coupling matrix,
Ccor is the Coriolis coupling matrix,
M is the mass matrix,
fextern is the external force vector,
fcen is the centrifugal force, and
u is the displacement.

With the exception of Kg, all of the matrix terms are constant, depending only on the
geometry and the elements. The Coriolis and centrifugal terms are also independent of
displacement, u, though they depend on Ω.

For linear analysis (both linear statics and linear transient dynamics), the geometric
stiffness terms is zero. However, since this term depends on stress, which is proportional
to displacement, the geometric stiffening is typically proportional to the square of the an-
gular velocity. As the geometric stiffening is typically of the same magnitude as centrifugal
softening (also proportional to Ω), confusion can arise.

In multicase analyses, the matrices are typically generated only once; exceptions occur for
nonlinear solutions and for the tangent method. It is recommended that linear solution
cases include an update to the tangent stiffness matrix as part of a multicase solution. An
example is shown in Figure 20.

Solution
case s1

statics
load=1

case up
tangent

case s2
statics

load=1
End

Figure 20: Example using Tangent Update

Limitations

There are a number of limitations for the rotational frames implementation.

1. Static analysis appropriately applies the centrifugal and Euler forces. The left hand
side matrix for geometric stiffness is only properly updated if the tangent step is
applied.

166

2. In a single case solution, quadratic eigen solutions will include Coriolis and centrifugal
terms if angular velocity is specified in the LOADS section. This is the case even
though there is no true load for QEVP.

3. Currently, QEVP solutions can be computed for rotating structures only if there are
no rigid body modes in the structure. An example is shown in Figure 21. In this case,
a static preload with a rotational load is computed, followed by a tangent update, and
then followed by a QEVP analysis. This type of analysis would be useful for examining
the effect of rotational loading on the modes of a structure. However, this will only
work correctly if there are no rigid body modes in the structure. Future releases will
allow for rigid body modes in these types of computations.

4. The user is limited to one rotational frame per analysis. In other words, all of the body
must be rotating together. One could not model a helicopter in a fixed frame and the
associated rotor in another.

5. Rotational loads applied in the rotating frame are linear loads, and do not require a
follower keyword.

6. For transient dynamics, the time varying function must be 1.0.

7. Angular acceleration is only applicable to statics analyses.

8. Superelements do not retain full accuracy. It is recommended that interface dofs for
superelements retain either 3 or 6 degrees of freedom.

9. The BOUNDARY section applies to all cases in a multicase solution.

Solution
case ’statics’

statics
load=1

case ’up’
tangent

case ’qevp’
qevp
method=projection_eigen
nmodes=100
load=1

End

Figure 21: Example of using qevp for Tangent Update

UNCLASSIFIED - UNLIMITED RELEASE 167

NOTE:
A time varying function with magnitude 1.0 for the full time
span should be used for time varying solution cases. Additional
work would be required to apply general loading patterns.

Finally, for optimal accuracy, the user can update the tangent
matrix at the expense of greater computational expense.

2.14.16 Rigid Body Filter for Input

For some analyses, it is advantageous to remove all or some of the rigid body components
of a solution. The input forces may be filtered so that only self-equilibrated forces are
applied. The filter is applied using input in the parameters section (2.3). While the
filter can ensure equilibrated loads, additional parameters may be required to help the linear
solver address the singularity generated by floating structures. Typical input is provided
here, with details in the appropriate sections. Note that when FilterRbmLoad is used,
the num_rigid_mode parameter must also be specified to signal to the solver now
many rigid body modes are present. The FilterRbmLoad parameter is currently only
supported for transient3 and static solution cases. For other solution cases this parameter
will have no effect on the solution.4 The similar capability for modal solutions is presented
in section 2.1.35.

Parameters
FilterRbmLoad=allStructural
rbmtolerance=1e-6
num_rigid_mode 6

End

The range of the num_rigid_mode parameter is {0, 1, 6, 7}. The value 1 refers to a
structural acoustics problem in which the acoustic region is floating. The value 6 refers
to a structural problem in which the structural region is floating. The value 7 refers to a
structural acoustics problem in which both the acoustic and structural regions are floating.
If the parameter num_rigid_mode is parsed, Salinas calculates the corresponding rigid body
modes, checks the residuals, and report a fatal error if the residual norms

‖Kφ‖
‖φ‖

3 The FilterRbm option is only compatible with Newmark-Beta time integration. The generalized-alpha
time integrator may be used, but the coefficient alpha_m=(2 rho-1)/(1+rho) will be set to zero, where rho
is the integration parameter. The resulting integration scheme is still 2nd-order accurate. The rigid body
motion equations will be integrated using the same scheme as the flexible body equations (see section 1.17
in the theory manual for details).

4 Modal solutions, such as modaltransient, do not use FilterRbmLoad. However, see the HowTo manual
for means of accomplishing the same process by direct use of the geometry rigid body modes.

168

are larger than rbm_tolerance. The default rbm_tolerance is 10−10. Each module that
needs the rigid body modes will recalculate them.

2.15 Load

Loading conditions for all multicase solutions are specified within the load section. See
paragraph 2.1.1 for information on specifications for multicase solutions. The load section
is identical to the loads section described in the previous paragraph (2.14), except the
section begins with the load, and a load step identifier is required. The following example
illustrates the required input.

LOAD=57
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
force = 0. -1 0

END

Unlike the loads section, there may be multiple load sections in the file, with each
entry corresponding to an applicable step in the solution.

2.16 INITIAL-CONDITIONS

Initial conditions are specified via the INITIAL-CONDITIONS section. Cur-
rently, only velocity and displacement can be specified as initial conditions. The initial
conditions can then be used in either an implicit or explicit transient analysis. Both linear
and nonlinear transient are supported.

Three options are available.

1. Initial conditions are read in from the Exodus file.

2. Initial conditions are specified globally in the INITIAL-CONDITIONS sec-
tion.

3. Initial conditions are specified on a block-by-block basis in the input deck.

An example of the first option (input from Exodus file) is given below.

UNCLASSIFIED - UNLIMITED RELEASE 169

INITIAL-CONDITIONS
velocity=from_file
displacement=from_file

END

In this case, Sierra/SD will read both velocity and displacement initial conditions from
the Exodus file. The variable names on the Exodus file must be VEL for velocity and
DISP for displacement. The full names of the nodal variables for displacement are ”DispX”,
”DispY”, ”DispZ”, ”DispRX”, ”DispRY”, ”DispRZ” and for velocity are “VelX”, “VelY”,
“VelZ”, “VelRX”, “VelRY” ,“VelRZ”. Case is not significant, but all 6 components must be
present for the desired conditions. If only velocity is to be specified as an initial condition,
the syntax would be,

INITIAL-CONDITIONS
velocity=from_file

END

An example of the second option is given below.

INITIAL-CONDITIONS
velocity=1 0 0

END

In this case, the entire model is given an initial velocity of 1 in the x direction, and 0 for the
y and z directions.

An example of the third option (block-by-block specification) follows.

INITIAL-CONDITIONS
velocity=by_block

END

BLOCK 1
velocity = 1 0 0

END

In this case, the velocity is read in from the input deck on a block-by-block basis. This
simple example only has one block, which is given an x velocity. If more than one block is
specified in the mesh, each block could have its own initial conditions. However, if two blocks
share nodes and are given different initial conditions, then the results may be unpredictable,
since the common nodes on the blocks would have conflicting initial conditions. Thus, we
recommend the user verify that blocks are disjoint before specifying different initial conditions
on a block-by-block basis.

170

Initial conditions are currently only implemented for transient analysis. They can also be
used in multicase solutions, but they will only have an effect on the transient analysis that
are in the multicase solution. For multiple transient analysis in a multicase, only the first
transient analysis will use the initial conditions, since the subsequent transient cases would
simply get their initial conditions from the previous case.

2.17 RanLoads

The RanLoads section is used to provide input information for spectral input to a
random vibration analysis. In a random analysis, the output response relates to the input,
as follows.

ai(ω) =
∑
j,k

HT
ji(ω)Sjk(ω)Hkm(ω) (39)

where,
ai is the output quantity at degree of freedom, i. For example, ai may be

the acceleration power spectrum, measured in (in/s2)2/Hz.
Hij is the transfer function from input i to dof j.
Sjk is the input power spectrum. Typically this is in units of (force)2/Hz.

It is dimensioned to the number of independent inputs.

The RanLoads section provides a specification for Sjk(ω). Note that this input will
contain both a spatial and spectral component. In Sierra/SD , we require that each matrix
element in the input power spectrum be expressible as a product of spectral and spatial
components.

Sij(ω, x) = Yi(x)Yj(x)Fij(ω) (40)

where Yi is a spatial loading term associated with the ith row and column of S, and F is a
spectral only matrix function.

The RanLoads section contains the following required keywords.
Parameter Argument Description
matrix Integer matrix-function identifier
load Integer row/column identifier

The matrix keyword identifies the appropriate matrix-function (see section 2.29).
The matrix-function determines the dimensionality of the input (using the dimension
keyword). It also determines the spectral characteristics of the load.

The spatial characteristics (which correspond to Yi in equation 40) are determined in
load sections within the RanLoads definition. There must be exactly as many load
sections as the dimensionality of input. For example, if the SFF matrix is a 3x3, then there
should be 3 separate load sections. Each load section within the RanLoads block must
be followed by an integer indicating to which row/column it corresponds. The details of

UNCLASSIFIED - UNLIMITED RELEASE 171

each load section are identical to the over all loads section (see 2.14) except that no
time/frequency function is allowed. Note that only one load is required per row of the SFF
matrix, but each entry of the matrix may have a spectral definition (identified by a real
and/or imaginary function).

The following example illustrates the definition of a single input specification. The loading
is scaled so that a 1000 lb mass located on the input point (in nodeset 12 here) is scaled to
produce a unit g2/Hz loading.

RANLOADS
matrix=1
load=1

nodeset 12
force=0 1 0
scale 1.00e3 // needed to convert to g
// loads input in lbs. The PSD is in g^2/Hz.
// F = accel * mass
// = accel * (scale_factor)
// = accel * ((1000*.00259)*384.6)

END

Scaling the input force for a random vibration analysis can be confusing.5 This is especially
true since enforced acceleration cannot be used to apply the force. The example above
applies to english units where awtmass parameter has been applied. For SI units or other
systems where wtmass=1, the force would need to be multiplied by g to apply the input as
acceleration in g’s.

The input acceleration may be examined by evaluating the output PSD at the input
degree of freedom. This is done by putting the applied load set into the frequency section
(2.10), and adding the acceleration keyword. The output is in the native units of
analysis. For the example above, the output will be in (in · lbm/s2)2/Hz, and must be
divided by (386.4)2 to convert to g2/Hz.

2.18 Contact Data

Not truly functional at this time.

5 Note that we are scaling the spatial forces, Yi, which are combined as a product in equation 40. Thus
the scale factor is linear in the load. The resulting input power spectrum, Sij , will contain the square of the
scale factor.

172

2.19 Tied Surfaces

Tied surfaces provide a mechanism to connect surfaces in a mesh that will always be
in contact. Because the surfaces are always tied, the constraints may be represented by a
set of linear multipoint constraints (see Appendix 3.36). Tied surfaces are also known in
the literature as “glued surfaces” or as “tied contact”. They are used almost exclusively to
combine two surfaces of a mesh that have not been meshed consistently.

There are a number of ways of combining surfaces that have not been consistently meshed.
The simplest method constrains the nodes of the slave surface to lie on the master surface.
In this method, the constraint is called inconsistent because the mesh does not ensure that
linear stress will be maintained across the boundary. The stress and strain in the region of
the constraint will be wrong. However, loads are properly transferred across the boundaries,
so a few element diameters away from the boundary, the stresses and strains should be
approximately correct.

Tied surfaces can currently be specified for structural-structural interfaces, acoustic-
acoustic interfaces, and structural-acoustic interfaces (i.e. wet interfaces). The syntax in
the TIED DATA block is the same in all three cases. In the first case, the nodal dis-
placements on the slave surface are constrained to lie on the master surface. In the last
case, the nodal acoustic pressures on the slave surface are constrained to match those on
the adjacent master surfaces. In the case of tied structural-acoustic interfaces, it is neces-
sary to ensure a weak continuity of both stress and displacement (velocity) across the wet
interface.29,28 Also for tied structural-acoustic interfaces, we recommend that the acoustic
surface be defined as the master (and hence should have its sideset number listed first in the
input deck). Defining the structural surface as the master sometimes causes an error related
to singular subdomain matrices.

We do allow mixing of tied surface cases in a given simulation. For example, one may
have tied acoustic-acoustic and tied structural-acoustic data blocks in the same input file.
However, it is necessary that each sideset be exclusively attached to either structural elements
or acoustic elements. A single sideset cannot simultaneously contain both acoustic and
structural elements. This does not restrict the types of analysis that can be done, but it
may lead to more TIED DATA blocks. However, this extra input will reduce confusion
and likely also reduce potential modeling errors.

There is also an additional option associated with the enforcement of transverse dis-
placements. The keyword TRANSVERSE can be specified as tied, slip, or friction.
The tied option is the standard inconsistent tied surface approach. The slip option only
constrains normal degrees of freedom between the master and slave surfaces. In this op-
tion, the tangential degrees of freedom are free to slide. This would be the case if there
was no friction between the surfaces. Finally, the friction option allows one to specify a
simple friction model. This option is currently not supported. The default value of the
TRANSVERSE keyword is “tied”.

A note about gap removal. Currently, Sierra/SD will remove the gap on TIED

UNCLASSIFIED - UNLIMITED RELEASE 173

DATA block if the tied contact is inconsistent, i.e., the method is not set to mortar
or other options. To turn gap removal off, set the gap removal keyword in the tied
data block to off. The gap removal algorithm will move the nodes from the slave surface
(specified by the 2nd surface id in the tied data block) to faces on the master surface. The
gap is provided by using ACME’s gap and push back vector quantities. The output Exodus
file (if created) will have the updated coordinates and not the original coordinates. The
system matrices will also use the updated coordinates. The gap removal option is set to on
(default) for inconsistent contact and does not work for any other method.

2.19.1 Mortar Methods

Mortar methods may also be used to tie the surfaces. This is currently under development,
but some capability is available. Large tied surfaces using the mortar methods may have a
very large number of fully coupled constraints which can overwhelm most parallel solvers.
The cost in computing the mortar contribution is higher than the inconsistent method, but
the solution will typically be much better in the region of the constraint.

Two “flavors” of mortar methods are used. In both approaches, the slave surface is
constrained to meet the master surface in an integral sense. Standard mortar methods are
somewhat simpler, but can result in a constrained system which fully couples all the nodes
of the slave surface with the nodes of the master surface. Dual mortar methods are much
more friendly to the linear solver, as the constraint system decouples the slave nodes.

Mortar methods are specified in the TIED DATA block using the keywordmortar. To
select the type of method, standard or dual, the keywordsMortarMethod=standard
OR MortarMethod=dual must be specified in the PARAMETERS block. If no
method is specified, Sierra/SD defaults to the dual mortar method.6

2.19.2 Node to Face

Tied surfaces are specified by a listing of master and slave side sets. Any number of tied
surfaces may be specified in the input, i.e. more than one tied surface section may occur in
the input. Each tied surface section represents a single logical pairing of constraint side sets.

TIED DATA
Surface 12, 18
transverse slip
search tolerance = 1e-7
edge tolerance = 1e-8

6 There is no means of applying standard mortar methods to some interactions, and dual mortar methods
elsewhere.

174

Node−to−Node Node−to−Face

Figure 22: For node-to-node searches the search tolerance, must be large enough to capture
nearby nodes. For node-to-face searches (as used in tied surfaces), it should only capture
the nearby surface.

gap removal = on
END

In the example above, sideset 12 is defined as a master surface. Side set 18 is the slave
surface. Each node in the slave surface is tied to the set of nodes in the corresponding
element face of the master surface. The transverse degrees of freedom are allowed to slip
in this example. If the TRANSVERSE keyword were omitted, standard tied surfaces
would be used.

Tied surfaces use a node-to-face search algorithm. In this algorithm, the “search toler-
ance” represents the normal distance from a node on one surface to a corresponding face on
the other. Thus, the search tolerance will typically be quite small and represents the amount
the two surfaces may not be coincident. This is in contrast to a node-to-node search, where
the “search tolerance” represents a search radius. See Figure 22.

Special care should be used when using the “edge tolerance”. If this tolerance is too large,
non-intuitive interactions can be created.

Note: The current implementation ties a master and slave sur-
face that are face connected only. We have not implemented or
tested a capability to tie the edges of shells.

The relevant parameters for tied surfaces are shown in Table 57.

Smoothing parameters may be needed to control smoothing of the normal. Figure 23
illustrates the normal definitions on a faceted surface. The discontinuity in normals can
be an important consideration on curved surfaces where faceting affects tangential sliding.
Smoothing parameters are illustrated in Figure 24 and include the following.

smooth angle If an angle between two faces exceeds this value (in degrees), then the angle
is considered to be “sharp”, and no smoothing is done. Default is 30o.

UNCLASSIFIED - UNLIMITED RELEASE 175

Table 57: Tied Surface Parameters

Parameter type description
Surface integer pair master and slave sideset

separated by comma or space
Search Tolerance Real face normal of search tolerance

defaults to 1e-8
Edge Tolerance Real search tolerance beyond an edge facet

defaults to 1/10 search tolerance.
Newton Tolerance Real convergence tolerance used in ACME

defaults to 1e-12
Interaction String node-to-node (not supported)

node-to-face (default)
Method String inconsistent (default most solvers)

mortar (default for CF solver)
Transverse String tied (default)

slip (transverse displacements can slip)
friction (currently not supported)

Gap Removal String Yes (default: for collocation/inconsistent tied contact only)
No

smooth angle Real maximum angle for smoothing (def=30)
smoothing distance Real relative distance for smoothing
smoothing resolution String “node” or “edge” based

176

smoothing distance If the relative distance from a node exceeds this value then no smooth-
ing is done. This is a number between 0 and 1. At small values, normals are smoothed
only very near the node. As the distance goes to 1, all normals are smoothed. De-
fault=0.5.

smoothing resolution The resolution method can be either node based, or edge based.
This may be needed to control smoothing on edges that include both a sharp and a
non-sharp edge. Default=node.

Figure 23: Normal Definitions on Faceted Geometry. When low order elements are used to
describe a curved boundary, the normal is poorly defined at the edge of the facets.

}

smooth distance

smooth angle

Figure 24: Smoothing Parameters for Surface Normals. No smoothing occurs for faces that
are misaligned by more than the specified “smooth angle”. Within the “smooth distance”,
normals vary linearly with relative distance from the node.

2.20 Contact Normals

For all the contact type interactions, including tied surfaces and tied joints, we use the
ACME package to search for the interactions.30 The algorithms used restrict the search
to matching faces that have opposing normals. For solids, this is seldom an issue. The
normals for a solid are always outward from the solid, so two interacting solids (unless they
occupy the same volume), will naturally have opposing normals. However, the situation for
shell-shell or shell-solid interactions can be more complicated.

Sidesets may be created from the top or bottom surfaces of the shells. Thus, the shell
surface has a natural normal direction determined by its connectivity, and the sidesets gen-
erated from the shells have a direction as well. The sideset direction may align or oppose
the direction normal of the shell itself. If the shell normal does not oppose the normal of the
mating surface, no interactions will be found, and the surfaces cannot be tied. See Figure
25.

UNCLASSIFIED - UNLIMITED RELEASE 177

Normal Opposed. Interactions are Possible

Normals are aligned. No Interactions are Possible

Figure 25: Shell Normal in Contact or Tied Interactions

178

2.21 RigidSet

Rigid Sets are intended as a usability tool to permit the analyst to treat a set of nodes
as completely rigid. The input is straightforward.

RIGIDSET set1
sideset 1
sideset 2
nodeset 88

END

The above definition would establish a single set that is tied together. For purposes of error
reporting only, the name “set1” is associated with this example set. If multiple independent
sets are required, then multiple rigidset definitions may be made.

The relevant parameters for rigidsets are shown in Table 58. Any number of RigidSet
sections may be introduced, each will act independently. Exodus sideset or nodeset infor-
mation may be included in the definition.

Table 58: RigidSet Parameters

Parameter type description
sideset integer sideset id
nodeset (not recommended) integer nodeset id
center node tied to node integer see below

2.21.0.1 Tied Node: The rigid set is often used as part of a tied joint (section 2.23). In
this case, a “reference” node may be generated and tied to another block or element. This
is accomplished with the keywords below.

centernode tied to node XX block YY

Here XX is the node number of the element in the block. This only works for blocks with a
single element and has only been exercised for two node elements. Thus XX is either 1 or 2.
There are examples in the “HowTo” documentation. Figure 26 illustrates the concept.

2.21.0.2 Limitations. Rigidsets meet an important need to tie many nodes together.
Generally they are much more robust than generating collections ofRBARs or other rigid
elements. However, it is very easy to generate redundant constraints through this input.
Redundant constraints cause most linear solvers to fail, and we aren’t good at providing
diagnostics. Generally,

UNCLASSIFIED - UNLIMITED RELEASE 179

RigidSet

Reference Node − physical

Virtual Block

CenterNode − virtual

Figure 26: RigidSet/TiedJoint Centernode Connection. The model illustrates the connection
of a physical rigid set to a physical reference node via a virtual center node and virtual
connection block.

1. rigidsets must be completely disjoint, i.e. they may share no common nodes. If they
share a node, they should be put in the same rigid set.

2. None of the nodes in the rigidset should be constrained (as through a boundary con-
dition).

3. While nodesets can be used to define rigidsets, this is not recommended because parallel
decompositions may put only one or two nodes on a processor. So few nodes may
introduce local singularities in rotation that impact the linear solver. If possible, use
a sideset to define the rigidset.

4. Other constraints (such as RBARS) should not further constrain the set.

This limitation does not prohibit the addition of an RBAR or other constraint which ties
the rigidset to an otherwise unconstrained node.

2.22 RrodSet

Like the RigidSet of section 2.21, the RrodSet provides a convenient means of tying
together a surface. All the limitations of the rigid set apply here. Unlike the rigid set, the
rrodset constrains only the distance between nodes on the faces, and no rotational degrees of
freedom are constrained. The RrodSet acts much like a Kevlar skin; it resists stretching,
but does not impede bending.

For a quadrilateral face, the Rrodset is equivalent to applying a rigid rod to each of the
edges of the face. A constraint is also placed across one of the diagonals of the face as shown
in Figure 27. An example is shown below. Note that nodesets are not allowed in Rrodset
specifications.

180

RRODSET
sideset 5

END

��
��

�
��

�
��

r r

rr

Figure 27: RrodSet Constraints. The black lines indicate the edge of the element. Red lines
are corresponding linear constraints.

Like the RigidSet, the RrodSet may be used to connect a “reference” node to a
block.

2.23 Tied-Joint

The “Tied Joint” structure is a meta structure that provides an efficient and robust means
of modeling a joint structure. At the heart of the Tied-Joint is a whole joint model. For
example, an Iwan element may represent the joint. However, the Tied-Joint permits flexible
mixing of whole joint models and other models. For example, the Iwan element may be
used to represent the shear response of the joint, while the normal components of response
are represented by a tied surface. Thus, the energy loss of the joint would be properly
approximated by the Iwan element, while the tied surface ensures that the normal surfaces
remain properly aligned. It also avoids adding some of the artificial stiffness that a rigid set
or collection of rbars introduces.

2.23.1 Input Specification

Refer to Figure 29 for reference to the model definition. An example input is shown in
Figure 30. There are several sections to the model definitions.

Name: Optional name of this joint. Useful primarily in diagnosing error messages.

Normal Definition: In the Tied-Joint the joint behavior in the normal direction is gov-
erned by a “tied data” type definition. For many joints, the energy loss is primarily
due to microslip in the shear directions. The tied conditions are described exactly
as in the “Tied Data” (users section 2.19), but the data is entered within the tied
joint specification. These specifications apply only in the normal direction. A pair of
matching surfaces is a required part of this definition.

UNCLASSIFIED - UNLIMITED RELEASE 181

Shear Definition: A whole joint model may be referenced as part of the shear definition.
Details of the shear specification depend on the normal definition. For a normal def-
inition = “none”, all 6 dofs must be specified in the referenced block. With a “slip”
definition, the normal components have been specified. Only the 3 dofs associated with
in plane motion are used. A fully tied normal requires no connector element.

Coordinate Frames: If the shear behavior is not isotropic, a reference to a coordinate
frame may be required. The frame may be curvilinear (e.g. cylindrical), in which case
whole joint quantities are evaluated at the centroid of the surfaces (see coordinates,
2.27). To reference the basic (or default) frame, use coordinate frame “0”, which is the
default. The coordinate frame is specified in the connected element frame.

For curvilinear coordinate frames, it may be difficult to exactly specify the orientation
of the centroid of the surface. Any user defined coordinate frame will be projected
to the plane of the surface at the centroid, and a new coordinate frame is generated
for specification of the orthogonal, in-plane coordinates. The “X” and “Y” axes are
projected to the plane, with the “Z” axis in the normal direction.

Shear Axis:

In the case when the whole joint model is a Joint2G element, the shear_axis
can be used to specify the coordinate direction used for the first in plane constitutive
component. We refer to Figure 28 for a description of the local coordinate system used
to specify the constitutive behavior of the Joint2G element. The surface normal,
n, is obtained from ACME as the normal on the node that is closest to the centroid
of the sidesets that define the tied joint. This normal direction defines the “z” axis
of the local coordinate system. The shear_axis definition specifies which of the 3
axis of the user-specified coordinate system (in this example coordinate 5) is intended
to be the first shear direction for the constitutive response. Thus, if shear_axis
is set to 1, then x′ is defined as the part of the x axis (that is, the x axis as defined
in the user-defined coordinate system) that is orthogonal to n. If the normal (or “z”
direction) of the user specified coordinate system lines up exactly with the normal that
is obtained from ACME, then the shear direction will be in exactly the same direction
as the x axis in the user-defined coordinate system. Generally, they will not line up
perfectly, and this is the main reason why the shear_axis is needed. Of course,
once n and x′ are defined, the third component of the coordinate system ŷ can be
obtained by a cross product.

Parameters of the input are summarized in Table 59. Details are described below.

Normal Definition: This keyword performs two functions with respect to the normal load-
ing. First, it defines the type of connection. This may be “slip” or “none”.

SLIP implies the faces will remain in contact, and shear effects are managed by the
“shear definition”.

182

x

y

x’

n

Figure 28: The surface normal, n, is defined by the normal of the surface at the centroid
point. The shear axis direction (shown as x) is projected onto the surface at x′. The x′
vector and the normal provide the basis for the generated coordinate frame.

NONE implies that no specific normal interaction is provided. Surfaces may separate
or interfere. It may be used together with a “rigid” shear distribution.

The normal definition also includes a definition of the surface pairs in the joint.

Surface: Required specification for the joint surfaces. Other “tied data” parameters may
follow.

connect to block: A reference to a block containing parameters for the whole joint.

shear distribution: The constraint weighting for the shear part of the surfaces. This
keyword is currently not used, but will be implemented in a future update.

uniform provides equal weights to all nodes.
distance_function provides a weighting based on the return value of a function. For

example,
distribution distance_function 5

refers to function definition “5” (section 2.28) to determine the weighting func-
tion. The function is passed the distance from the centroid of the surfaces to
determine the weight at any given node.

rigid provides a means of constraining all the nodes on the surface in a rigid set (see
users 2.21). This option can only be selected if the “normal definition” is “none”.
Presumably the analyst would provide a normal connection using a Joint2G or
other element.
The “rigid” option removes all flexibility from the joint surfaces. The other options
automatically generate a “virtual” node on each surface, and constrain the shear
motion to that point much like a weighted “RBE3” type connection. The virtual
node pair is managed in the shear directions by the shear stiffness contributions.

UNCLASSIFIED - UNLIMITED RELEASE 183

Keyword Description of option
Name optional name of this joint
Normal Definition “slip” or “none”

- surface matching surfaces
- other Tied Data options as needed

Shear Definition
- connect to block reference block for whole joint
- shear distribution “uniform”

“distance_function”
“rigid”

- side “average”
“rigid”
“rrod”

Table 59: Tied Joint Parameters

side: The type of side to make each surface.

average means no additional constraints are added to the surface. The two ends of
the Joint2G element are attached to the surface using averaging type constraints.

rigid provides a means of constraining all the nodes on the surface in a rigid set (see
users 2.21).

rrod provides a means of constraining all the nodes on the surface in a rrod set (see
users 2.22).

Figure 29: Tied Joint Geometry. The two side set surfaces are shown separated for clarity.
A ghost element is created which connects only the shear components of the joint. Normal
components are interconnected using Tied Data type structures.

Not all tied joint specifications are fully consistent. In particular, the specification of
the “normal definition” and the “side” descriptions are not fully independent. Table 60
summarizes some of the dependencies between these two parameters.

184

TIED Joint
Normal Definition = slip

surface 3,5
search tolerance = 1e-6

Shear distribution = uniform
connect to Block 11 // Joint2G block

END

// definitions for the referenced joint2G block
Block 11

Joint2G
Kx=Iwan 1
Ky=Elastic 1e6
Coordinate=5 // for anisotropic shear parameters

END

Figure 30: Tied Joint Example

2.23.2 Output Specifications

Because the Tied-Joint is not fully represented in the Exodus database (except as a
collection of surfaces), standard element output capabilities are insufficient to represent the
data. The data is divided into two categories: configuration and results.

2.23.2.1 Configuration Output: The configuration output is only available in the text
output of Sierra/SD , i.e. in the .rslt file. It is requested with the keyword “INPUT” in
the “ECHO” section (see 2.7). This includes the following.

1. The type of the normal enforcement.

2. Surface information.

3. Centroid of the surface pairs (if applicable).

4. Owning processor for the shear elements (if applicable).

5. Shear models.

2.23.2.2 Results Output: The only results output that is currently available for a Tied
Joint consists of the forces in the Joint2G element that connect the two surfaces of the tied
joint together. Currently, these forces can be only obtained in the history (or frequency) file
for a transient or nonlinear transient analysis. They cannot be written to the global exodus
output file. If we consider the same example that is given in Figure 30, we could obtain the
element forces as follows for a transient analysis

UNCLASSIFIED - UNLIMITED RELEASE 185

Normal Definition Side status
none average The only constraints applied to the surface

are from the RBE3.
rrod Adds only RRod type constraints to the

surface.
rigid With a whole joint model, this recovers the

legacy method of attaching whole joints.
slip average Does not add tangential constraints to the

surface. Preferred method to tie to whole
joint model.

rrod surface is allowed to flex, but is somewhat
rigidized.

rigid Invalid. Overly Constrained.

Table 60: Tied Joint, “Normal” and “Side” dependencies

HISTORY
block 11
eforce

END

or, for a frequency domain analysis,

FREQUENCY
block 11
eforce

END

where in this example block 11 is the Joint2G block that connect the two surfaces of the
tied joint together.

2.24 BLOCK

Each element block in the Exodus file, must have a corresponding BLOCK entry in
the input file. The opposite is not true - there can be BLOCK entries in the input deck
that do not have corresponding entries in the Exodus file. There are two cases where this
can happen

• Virtual blocks. These are blocks that have entries in the input deck and are intended
to be part of the model, but have no corresponding entries in the Exodus file. At this
time, only Joint2G elements (see section 3.31) can be defined to be virtual blocks.

• Extra blocks that have entries in the input deck but are not intended to be part of the
model. These blocks are silently ignored by Sierra/SD .

186

It is an error to have multiple definitions for the same block. However, Sierra/SD does not
report the error. Which definition is used is not defined. This section contains information
about the properties of the elements within the block.

2.24.1 Block Parameters

There are two main types of block parameters:

1. Parameters exist which are common to most elements. These include:

• Material property references are required for most elements. The material ref-
erence is of the form, material=material_id, where material_id is a string
representing the material identifier (see section 2.26).
• coordinate frames - optional
• nonlinear behavior - optional
• block damping - optional
• non-structural mass - optional

2. Element specific names and parameters. These properties depend on the element type.
Clearly shells will require a thickness, while it is meaningless for solids.

An example is provided in Figure 31.

A list of the applicable attributes for some of the different element types is shown in
Table 63. Each element type is outlined in section 3.

2.24.2 General Block Parameters

Parameters that are generally applicable to almost all blocks are listed in Table 61. More
detailed descriptions are available in the following paragraphs.

2.24.2.1 Nonlinear Behavior. The nonlinear behavior of the block in nonlinear solu-
tions is controlled by the nonlinear keyword. The global default for block-level nonlinear
behavior is set in the PARAMETERS section (2.3). Within each block, we can override that
default value. For example, to set a block to default to linear behavior, we would have the
following BLOCK definition.

BLOCK 3
nonlinear=no

UNCLASSIFIED - UNLIMITED RELEASE 187

BLOCK 32
material 2
tria3
thickness 0.01

END

BLOCK 34
material aluminum

END

BLOCK 3
Coordinate 1
Spring
Kx=1e6
Ky=0
Kz=0
BLKBETA=0.0031

END

Material aluminum
....

END

Figure 31: Example Block input. Note that the material ID specified for BLOCK 32 uses
an index (material 2), whereas BLOCK 34 uses a specified material ID string “aluminum”
These refer to materials defined by blocks “MATERIAL 32 ... END” and “MATERIAL
aluminum ... END” respectively (see Sec. 2.26 for details).

Table 61: General Block Parameters

Keyword Values Description
nonlinear yes/no blockwise nonlinear behavior
material string material identifier

rotational_type eulerian/lagrangian/none blockwise behavior for rotational dynamics terms
coordinate integer reference coordinate frame
blkalpha Real blockwise mass proportional damping
blkbeta Real blockwise stiffness proportional damping
nsm Real blockwise non-structural mass

188

material 2
tria3
thickness 0.01

END

Similarly, to turn on the nonlinear behavior for the block, we would have,

BLOCK 3
nonlinear=yes
material 2
tria3
thickness 0.01

END

Note that these block-level nonlinear flags override the global nonlinear_default key-
word that is set in the PARAMETERS section.

LIMITATIONS:
Linear element behavior in a nonlinear solution is limited to the
linear range of the element. For example, rotations are stored
incrementally in nonlinear solutions. This permits us to use ge-
ometrically nonlinear element formulations (such a corotational
formulation). However, it limits the linear behavior in such so-
lutions to rotations less than 360o.

2.24.2.2 Rotational Loading Matrices. For problems involving rotational loads, the
rotational_type keyword allows the analyst to specify which type of rotational for-
mulation to use for a given block of elements. The Eulerian formulation involves a fixed
(non-rotating) coordinate system. The Lagrangian formulation attaches a rotating coordi-
nate system to the block. If the None options is chosen, then rotational loads are ignored
for this block. Thus, a structure with a rotating disk would only have the rotational terms
applied to the spinning disk, and not the entire structure. The default is for the rota-
tional_type keyword is None.

2.24.2.3 Coordinate Frame Reference. The reference coordinate system may be de-
fined in a block. This definition applies to all the elements of the block and the associated
materials. At this point, the coordinate system is only recognized for a subset of the elements
(solid elements and springs). Further information on coordinate systems may be found in
section 2.27.

2.24.2.4 Block Specific Damping. In section 2.36, various methods of specifying the
damping parameters for a model are identified. In addition to these methods, block specific

UNCLASSIFIED - UNLIMITED RELEASE 189

damping parameters may be applied. These apply a stiffness (or mass) proportional damping
matrix on an element by element basis within the block. Thus, if a model is made of steel
and foam, one could apply a 5% stiffness proportional damping term to the foam, but leave
the steel undamped.

There is no physical justification for proportional damping, and there is no expectation
that it will accurately represent damping mechanisms in a structure. However, it is easy to
apply, and there are cases where proportional damping may reveal a need for more accurate
damping models. As with all damping models, the effects depend on the solution type. For
example, both statics and eigen analysis ignore the damping matrix.

The damping matrix generated from block specific damping is defined as follows.

D =
nblks∑
i

αiMi + βiKi (41)

Where D is the real system damping matrix, and αi and β1 are the proportional mass and
damping coefficients for block i. These coefficients are completely analogous to the system
level coefficients described in section 2.36. The damping contributions from these block
parameters are always added to the other contributions.

Block specific damping is applied using the blkalpha and blkbeta parameters. Block
proportional damping generates a damping matrix that is would couple modal based solu-
tions. It is not currently available in modal solutions such as modaltrans. Also see
section 2.26.10 for material modal like damping.

2.24.2.5 Non-Structural Mass. An element block may define a non-structural mass
(nsm) to be applied in addition to the elements’ internal mass. This can be used to simulate
an external load being placed on the elements. It is specified as a pseudo density, and the
units depend on the type of element being used. Table 62 list these units.

The following is an example of how to use non-structural mass in the input file:

//nsm specified in pounds per square inch
BLOCK 3

material 2
tria3
thickness 0.01
nsm 0.005

END

MATERIAL 2
density 0.5

END

190

Table 62: Non-Structural Mass Units

Element Type Units Example
One Dimensional mass/length lbs / in
Two Dimensional mass/area lbs / sq-in
Three Dimensional mass/volume lbs / cu-in

Table 63: Element Attributes

Element Type attr keyword Description
ConMass 1 Mass concentrated mass

2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG
Beam 1 Area Area of beam

2,3,4 Orientation orientation vector. For
the orthogonal direction

5 I1 First bending moment
6 I2 Second bending moment
7 J Torsion moment

9,10,11 offset beam offset
Spring 1 Kx spring constant in X

2 Ky spring constant in Y
3 Kz spring constant in Z

Triangle 1 thickness thickness
2 offset shell offset in normal direction

Quad 1 thickness thickness
2 offset shell offset in normal direction

UNCLASSIFIED - UNLIMITED RELEASE 191

2.25 Macroblock

It is possible to overload a single element block in the Exodus file to be used simultaneously
as several different element types. To use this feature, the BLOCK entry should list
the ids of the new macroblocks, which will share the same geometry from the Exodus
file. Additional parameters should not be included in the BLOCK specification as the
original element block will be treated as a "dead" element. For every macroblock listed, a
Macroblock entry must be present in the input file. A Macroblock entry should
look exactly like a normal BLOCK entry except for the keyword. The macroblock ids
must be unique and different from any existing block ids.

2.25.0.1 Macroblock Example. An example is provided below.

// the following element block is associated with block 1 in the
// exodus file. It specifies which macroblocks use this block.
BLOCK 1

macroblock 11 12
END

// the following macroblocks specify the types to use for the block
MACROBLOCK 11

dashpot
k=1e6
c=1e4
cid=1

END

MACROBLOCK 12
spring
Kx 1e+3
Ky 1e+3
Kz 3e-1

END

Macroblocks 11 and 12 will be used as though there are two distinct element blocks in the
Exodus file, one treated as a dashpot and the other as a spring. Because the macroblocks
do not actually exist in the Exodus file, element variables cannot be associated with them.
However, it is still possible to obtain some element variable results from the .rslt file
(section 2.7). Macroblock results will be specially labeled in this file because their elements’
ids are not unique.

192

2.26 MATERIAL

Most element blocks must specify a material. Details of that material are included in the
material section. The material section contains a material identifier (which is usually an
integer, but may be any string), an optional name keyword followed by a material name a
material type keyword and the necessary parameters. The different material types and their
parameters are summarized in Table 65.1

For example,

MATERIAL steel
isotropic
name "my model of steel"
E 30e6
nu .3

END

Deterministic materials may be input as isotropic, orthotropic, orthotropic_prop,
anisotropic, or isotropic_viscoelastic. In addition, stochastic isotropic materials
may be specified as S_isotropic.

2.26.1 Isotropic Material

Isotropic materials require specification of two of the following parameters.

Parameter Description
E Young’s Modulus
nu Poisson’s Ratio
G Shear Modulus
K Bulk Modulus

Isotropic materials are the default, and the keyword isotropic is not required. Of the four
parameters, exactly two must be supplied. They are related by the following equations.

E = 3K(1− 2ν)

G = 3KE
9K − E

Internally, Sierra/SD stores the values of K and G.
1 The material must be uniquely identified by it’s identifier. The “name” is used in reports and cannot

be used as an identifier. Using a descriptive string, rather than a material number, can enhance readability
to an input.

UNCLASSIFIED - UNLIMITED RELEASE 193

2.26.2 Anisotropic Material

Anisotropic materials require specification of a 21 element Cij matrix corresponding to the
upper triangle of the 6x6 stiffness matrix. Data is input in the order C11,C12, C13, C14, C15,
C16, C22, etc. The Cij must be preceded by the keyword Cij. The keyword anisotropic
is also required. Materials are specified in the order xx, yy, zz, zy, zx, xy. Note that this
ordering varies in the literature. It differs from the ordering in Nastran and Abaqus, but is
consistent with much of the published materials science data. An example input file with an
anisotropic material is found in section 1.2.

Each element defines a coordinate frame. The 1-direction for the material parameters
is defined by the 1-direction of the coordinate frame. The default is the basic or Cartesian
frame. In spherical coordinates (r, θ, φ), for example, the radial direction is the 1 direction.

2.26.3 Orthotropic Material

Orthotropic material entry is similar to to the anisotropic case.

A difference is that the keyword orthotropic replaces anisotropic, and only 9 Cij
entries are specified. These entries correspond to C11, C12, C13, C22, C23, C33, C44, C55 and
C66. Like the anisotropic material definition, the order is xx, yy, zz, zy, zx, xy.

Alternatively, an orthotropic material may be specified using orthotropic_prop
and the material parameters E1, E2, E3, nu23, nu13, nu12, G23, G13, and G12 as shown
in the following example. Note that all elastic materials must satisfy requirements that the
elasticity matrix is positive definite.

Material honeycomb
orthotropic_prop
name ’aluminum honeycomb in Mpa’
E1 = 508.7
E2 = 7641.0
E3 = 14750.0
Nu12 = .2
Nu23 = .0825
Nu13 = .1
G12 = 115
G23 = 2320.
G13 = 450.
density=0.5

END

194

A single orthotropic layer may be specified using orthotropic_layer. An orthotropic
layer must specify 4 of the above parameters (E1, E2, nu12, G12). Here is an example:

Material 13
orthotropic_layer
name ’ortho layer 1’
E1 = 508.7
E2 = 7641.0
Nu12 = 1.293
G12 = 115
density=0.5

END

If sensitivity analysis is being performed (see section 2.34), one indicates the parameters for
analysis by following these parameters with the +/- characters. In the first entry method, a
sensitivity analysis must be performed on all 9 parameters. In the second, each individual
parameter must be requested individually. The concept is that the sensitivity is performed
with respect to the labeled parameters, i.e. either the set of Cij parameters, or each individ-
ually labeled E1 term.

2.26.4 Stochastic Material

For stochastic materials, all material properties are determined by a table look-up, based on
the element ID. The file name for the table look up is taken from the name identifier. The
file is a standard text file with the first column corresponding to the element ID. The second
column is the bulk modulus, K, and the third (and final) column is the shear modulus, G.
The element IDs in the file need not be continuous, but they must be sorted in increasing
order. Thus the S_isotropic data look up file contains the element ID, the bulk modulus
and the shear modulus, with one line for each element. The stochastic material model is
very preliminary and is expected to change significantly in the next few years. An example
section from the input file is presented below.

MATERIAL 3
s_isotropic
name "mat3.txt"
density 0.288

END

From within “mat3.txt” the data looks like the following. The last two columns are bulk
and shear moduli respectively.2

2 For relations between isotropic moduli, see the discussion in section 2.26.1.

UNCLASSIFIED - UNLIMITED RELEASE 195

1 40e6 20e6
2 40e6 20e6
4 40e6 20e6
9 40e6 20e6
10 40e6 20e6
11 40e6 20e6

2.26.5 Linear Viscoelastic Material

Linear visco elastic materials require the specification of the density, and the limiting moduli
E_g, E_inf, G_g, G_inf. The subscript ’g’ refers to the glassy modulus, which occurs at
t = 0, or ω =∞. The subscript ’inf’ refers to the rubbery modulus, which occurs at t =∞,
or ω = 0. In addition the Prony series for the visco elastic materials have to be specified using
keywords K_coeff, K_relax, G_coeff, and G_relax. All of these parameters are required.

Although in most cases the values of E_g, E_inf, G_g, G_inf are considered to be con-
stants, there are cases where they actually depend on temperature. Temperature functions
can specify the value for the limiting moduli, for a given value of T_current. For example,
if the limiting moduli typically depend linearly on temperature, a linear function can be
specified for the values of E_g, E_inf, G_g, G_inf. We refer to the example given below
for the specifics on how to set this up.

For the bulk modulus K, the Prony series parameters are defined by the following equa-
tion:

K(t) = Kinf + (Kg −Kinf)
∑
i

Kcoeff [i] ∗ e−
t

Krelax[i] (42)

A similar equation holds for the shear modulus. Note that, the K_coeff and G_coeff MUST
sum to 1.0 (individually). Otherwise, the formulation is inconsistent. That is,∑

i

Kcoeff [i] =
∑
i

Gcoeff [i] = 1.0 (43)

Note that the number of terms in K_coeff and K_relax must be the same, and the number
of terms in the G_coeff and G_relax must be the same. However, the number of terms in
the K series does not have to equal the number of terms in the G series. Thus, one could
simulate a case where the material shear modulus G is visco elastic, but the bulk modulus
is not. In this case, the latter would have no terms in its series.

Optional parameters for visco elastic materials include reference (T_0) and current tem-
perature (T_current), and the WLF constants C_1 and C_2. (more explanation of the
Williams-Landel-Ferry (WLF) equation is given below). We note that any units of temper-
ature can be used, as long as they are consistent with the values of the constants (e.g. C_1
and C_2). For Kelvin and Celsius units, the constants C_1, C_2, a_T1 and a_T2 are the
same, since the expressions below involve differences of temperatures. Also, two constants

196

may be specified that describe the curve fit for the shift function, a_T1 and a_T2, in the
case when T_current - T_0 is negative. The equation, provided by Terry Hinnerichs, is a
good characterization of many visco elastic materials. Its form is

log10 (a_T) = a_T1 ∗ (1− ea_T2∗(T_current−T_0)) (44)

If these optional parameters are not specified, default values are used, as shown in the
table below. Note that equation 44 will only be used to compute the shift functions if the

Table 64: Default Parameters for Viscoelastic Materials

parameter default value
T_0 0.0
T_current 0.0
C_1 15.0
C_2 35.0
aT_1 6.0
aT_2 .0614

parameters aT_1 and aT_2 are specified. Otherwise, the standard WLF equation is used,
as described below.

If the parameters aT_1 and aT_2 are not specified, then the shift factors are computed
using the WLF equation. This equation is frequently used to determine an approximate set
of shift factors when experimental data for a particular material is not at hand. The shift
factors computed from this equation are used to scale the coefficients in the Prony series.
The shift factors computed from the WLF equation are a strong function of temperature.
The WLF equation is as follows

log(aT) = − C_1(T_current− T_0)
C_2 + T_current− T_0 (45)

where T_current is the current temperature in the block, and T_0, C_1, and C_2 are
material parameters that are determined experimentally. If C_1 and C_2 are not known
for a particular material, then the default values given above are typically used. Typically,
T_0 is the glass transition temperature of the material of interest. More explanation of the
WLF equation can be found in the books by Aklonis,31 and Ferry.32

After computing the shift factors using one of the two approaches given above, the re-
laxation times are shifted. This occurs before computations begin, using the relations

Gcoeff [i] = aTGcoeff [i] (46)
Gcoeff [i] = aTGcoeff [i] (47)

These shifts are automatically computed given T_0, T_current, C_1, and C_2, so that the
user does not need to shift the relaxation times beforehand. Note that if these parameters

UNCLASSIFIED - UNLIMITED RELEASE 197

are not specified in the input file, then they are given default values that result in no shifting
of relaxation times. In such a case, aT = 1.

An example material block for a linear visco elastic material looks like:

MATERIAL 9
isotropic_viscoelastic
name "foam"
T_0=0
T_current=25
C_1=1
C_2=2
aT_1=6.0
aT_2=.06
K_g = function 1
K_inf 10.0e6
G_g 10.0e1
G_inf 12.0
K_coeff .5 .5
K_relax 3.0 2
G_coeff .5 .5
G_relax 1 3
density 0.288

END

Note that the coefficients of both K and G sum to 1.0. This is necessary for a consistent
formulation. Also, in this case we specify a temperature function for K_g. Thus, the value
of K_g used in the simulations is the value of function 1, at the particular temperature
T_current.

A note on visco elastic materials: when using visco elastic materials in a nonlinear tran-
sient simulation, it is necessary to specify "nonlinear=no" in the BLOCK section of the visco
elastic block. This is because different internal force mechanisms are called for linear and
nonlinear cases, and visco elastic materials in Sierra/SD only support linear constitutive
model and small deformation.

We also note that if visco elastic materials are used in a statics simulation, then the
material is assigned the properties Ginf and Kinf . This is because in a slow (static) loading,
the material would respond with these material properties since they are the long-time or
slow response properties.

198

2.26.6 Acoustic Material

Linear acoustic materials require the specification of the fluid density, and the linear speed
of sound. In addition, the keyword acoustic must be in the material block.

MATERIAL
name "air"
acoustic
density 1.293
c0 332.0

END

Nonlinear acoustic materials require one additional parameter, B_over_A, which is a
measure of fluid nonlinearity. For air, B_over_A = 0.4. Tables of B_over_A for various
fluids can be found in.33

2.26.7 Temperature-Dependent Material Properties

Material properties in Sierra/SD can be specified to be temperature dependent. Tem-
perature dependent material properties are supported when temperatures are read in from
an Exodus file, or when they are specified on a block-by-block basis. In the case of ex-
odus temperatures, the material properties would vary from element to element, since the
temperatures vary with each element. When temperatures are specified on a block-by-block
basis, the temperature-dependence of the material properties can be specified explicitly in
the input deck. We note that when temperatures are specified both in the Exodus file as
well as on a block-by-block basis in the input deck, the input deck values take precedence.

For linear elastic materials, an example of specifying temperature dependent properties
is given below.

MATERIAL 1
E function=1
alphat .001
tref 100
nu 0.0
density 7700.0

END

MATERIAL 2
E function=2
alphat .001
tref 100

UNCLASSIFIED - UNLIMITED RELEASE 199

nu 0.0
density 7700.0

END

FUNCTION 1
type LINEAR
data 0.0 4.0
data 5.0e9 4.0

END

FUNCTION 2
type LINEAR
data 0.0 3.0
data 5.0e9 3.0

END

In this case, the elastic modulus of material 1 is specified by function 1, and the elastic
modulus of material 2 is specified by function 2. The moduli of each element will be de-
termined from its temperature and an interpolation on the function. In this example, the
functions are trivial, and thus the moduli of materials 1 and 2 will be 4 and 3, respectively.
Note that any of the 4 elastic constants k, g, e, ν can be specified as temperature dependent,
and can be given different functions. In this example, the Poisson ratio is constant and only
the elastic modulus is temperature dependent.

For visco elastic materials, functions do not need to be specified in the material block to
designate temperature dependence of the shift factors. This is accounted for automatically.
See section 2.26.5 on visco elastic materials for more details.

Currently, only linear elastic and linear visco elastic materials can be given temperature-
dependent material properties.

2.26.8 Density

For solutions requiring a mass matrix, all material specifications require a keyword density
followed by a scalar value.

2.26.9 Specific Heat

Conversion of energy deposited in a structure to a change in temperature may be effected
by a specific heat.

Q = ρV C ∆T (48)

200

Table 65: Material Stiffness Parameters

material type parameters
isotropic any two of K, G, E or ν
orthotropic nine Cij entries
orthotropic_prop E1, E2, E3, nu23, nu13, nu12, G23, G13, G12
anisotropic 21 Cij entries
S_isotropic file containing K and G

where Q is the total heat energy, ρ is the density, V is the volume, C is the specific heat
and ∆T is the change in temperature. It is up to the analyst to ensure that consistent units
are employed. Note also that the analyst must determine under what conditions the specific
heat is applied (constant pressure or constant volume).

Specific heat is used only in applying boundary conditions. Energy deposited within a
structure is converted to temperature using equation 48. Once converted to temperatures,
thermal stresses and temperature dependent material properties may be applied. The specific
heat defaults to 1.0, and must not be zero.

MATERIAL ’Steel-SI’
E=200e9 // Pa
NU=0.28
density=7850 // kg/m^3
specific heat = 0.45 // J/(gK)
tref = 300 // K
alphat = 0.001

END

The reference temperature is used only for temperature dependent material properties, such
as in visco elastic materials. In other words,

∆T = Q

ρV C
(49)

Tcurrent = Tref + ∆T (50)
εthermal = αT (Tcurrent − Tref). (51)

Recall that the specific energy is used for energy loads (sec. 2.14.8). The specific energy
is the energy per unit mass, Ẽ = Q/(ρV).

UNCLASSIFIED - UNLIMITED RELEASE 201

2.26.10 CJetaFunction

For the CJdamp solution method (see section 2.1.4), a frequency dependent damping
coefficient, η(f), may be specified3. All other solution methods will ignore this keyword. The
CJetaFunction keyword requires as a parameter the identifier of a function. Its use is
specified in the following example. See section 2.28 for details in specifying the function.
If no function is specified, the block will be treated as if the function were identically zero
everywhere.

MATERIAL 1
E=10.0E6
NU=0.28
density=0.098
cjetafunction=1

END

function 1
name ’function to use for material 1 eta’
type linear
data 0.0 0.001
data 100 0.010
data 200 0.030
data 400 0

end

The function specifies the frequency, amplitude pairs for η. The frequencies are in the
same units as the modal frequencies (i.e. there is no factor of 2π, and they are usually
supplied in Hertz). The CJdamp solution process interpolates the function at the eigen
frequencies to determine the effective damping for any particular mode.

2.27 COORDINATE

Coordinate systems may be defined for reference to the materials and boundary conditions.
As reported in the “history” section, nodal results may also be reported in arbitrary coordi-
nate frames in the history file only (see section 2.9). Note that all nodal locations, outputs,
etc. are always defined in the basic coordinate system in the standard Exodus files. These
new coordinate systems are always defined based on three locations, which are defined in the
basic coordinate system. These locations are illustrated in Figure 32.

1. The location the origin of the new coordinate system, P1.
3η is twice the normal modal damping coefficient. Thus, if eta=0.02 for all materials, the equivalent

modal damping will be 1 percent.

202

2. A point, P2, on the Z axis of the new system. Note that the location is required, not
the direction vector Z̃.

3. A point, P3, in the X̃Z̃ plane of the new system. The vector from P1 to P2 need not
be orthogonal to Z̃, but it may not be parallel to it.

P
1

Z
~

~
X

Y (basic)

P
2

P
3

X (basic)

Figure 32: Coordinate System Definition Vectors. The origin of the new frame is at P1.
The new Z̃ axis is the vector from P1 to P2. Spherical frames align their polar axis with Z̃.
The third point, P3, defines the X̃ direction in a Cartesian frame, the θ = 0 direction of a
cylindrical frame, or the φ = 0 direction of a spherical frame.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In
the case of noncartesian systems, the XZ plane is used for defining the origin of the θ
direction only.

This example creates a cylindrical system located at a point (1,1,1) with the cylindrical axis
in the (0,0,1) direction and the radial coordinate in the global Y direction.

Coordinate 7
cylindrical
1 1 1
1 1 2
1 2 1

END

UNCLASSIFIED - UNLIMITED RELEASE 203

The keywords for the coordinate system definitions are:

1. RECTANGULAR or CARTESIAN to define a cartesian system,

2. CYLINDRICAL for a cylindrical, i.e. polar system, and

3. SPHERICAL for a spherical system.

In spherical coordinates, it may help to think about the Cartesian frame (X̃, Ỹ , Z̃) with
the same orientation as (r, θ, φ):

X̃ = r sin(θ) cos(φ)
Ỹ = r sin(θ) sin(φ)
Z̃ = r cos(θ),

0 < θ < π, 0 < φ < 2π.

In the spherical coordinate frame the Z̃ direction is the North pole, θ = 0. And the X̃Z̃
plane is θ 6= 0 and φ = 0.

If input is selected in the ECHO section then the transformation matrix will be output
in the .rslt file (section 2.7). The transformation matrix is a unitary matrix which can be
used to transform vectors from one system to another. If we let T be the matrix reported in
the .rslt file, then the transformation from the basic system to the rotated frame is given
by,

vnew = T Tvbasic

where vnew is the vector in the new coordinates,
vbasic is the vector in the basic system, and
T T is the transpose of the .rslt matrix reported.

While the history file provides a convenient means for transforming coordinates, its ap-
plicability may be somewhat limited. In particular, only a single history file is written in
each analysis, and only one coordinate frame may be output per node (see section 2.9). The
history file will display variables as cartesian regardless of coordinate choice. Table 66 shows
the corresponding values for cylindrical and spherical coordinates.

2.28 FUNCTION

Time, frequency and/or spatially dependent functions for transient and frequency response
analysis can be defined using the function section. The following are simple examples of
the use of a function.

204

Coordinate System History Variable Corresponding Coordinate
Cylindrical X r

Y θ
Z z

Spherical X r
Y θ
Z φ

Table 66: Coordinate Names for history files

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION 2
// This is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945.
// The equation is y(t)=-800*t^2 + 8.9943*sqrt(t)

type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

The keywords for these function definitions are:

1. TYPE to define the functional form,

2. NAME for reference in echo and output, and

3. DATA for the functional parameters.

Other function definitions may require more parameters.

UNCLASSIFIED - UNLIMITED RELEASE 205

2.28.1 Linear Functions

For linear functions, the data elements are points of the function where the user defines the
value of the independent variable (e.g. time) and the corresponding value of the function.
Linear interpolation is used to find all other values of the function. In order to make the
linear interpolation unique, the order of the input data is important. Input checks will ensure
that time on subsequent data points is always greater than or equal to time on the previous
data point so that curves cannot double back on themselves. For example,

FUNCTION 3
name "illegal_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.05 1.
data 0.04 0. //illegal. the first column must never decrease

END

�
�
�
�
�� �

�
�

�
��

illegal segment

t
t t

t
Figure 33: Linear function #3. "illegal_fun"

Linear functions will extrapolate by using the value of the nearest data point. For example,
in the following function, f(t=0.3) = 0.5.

FUNCTION 5
name "extrap_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.02 0.5

END

Note that while it is possible to have functions that have two values
for the same time, this is not recommended. Such functions are very
susceptible to round off. Solutions may vary depending on the platform
or compiler used.

206

�
�
�
�
��
H
HHH

HH -

t
t

t d

Figure 34: Linear function #5. "extrap_fun"

2.28.2 Functions using Tables

Functions may be specified by reference to a linearly interpolated table (as discussed in
section 2.30). The table must be of dimension=1. Tables are very similar to the linear
functions described above with several important differences.

1. Referencing a value of a table beyond the valid range is an error. This is seldom a
problem in frequency domain analysis, but could often be an issue for time domain
analysis.

2. Tables can be more memory efficient that linear functions in some cases where there
is a large amount of data. This is especially important if only a few processors need
access to that data.

3. Tables are almost always much faster than linear functions, especially as the data size
grows.

The function in the following example is a tabular representation of the data of Figure 34
and Function 5 above.

FUNCTION 7
type table
tablename=example7

END

TABLE example7
dimension=1
size=5
datafile=’example7.txt’
origin 0.0
delta .01

END

Within the datafile, “example7.txt”, the following data would be represented.

UNCLASSIFIED - UNLIMITED RELEASE 207

0.0
1.0
0.5
0.5
0.5

Of course, the linear function can be evaluated for any time, and the table is limited to the
range 0-0.04. Table type functions require the tablename keyword.

2.28.3 Polynomial Functions

For polynomials, the data points given are the exponent of the independent variable and a
scale factor for that term. The independent variable taken to any real power will always be
evaluated as positive. If powers are repeated, their coefficients will sum. For example,

FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.
data 2.0 0.1
data 1.0 0.5

END

is equivalent to

FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.5
data 2.0 0.1

END

The function value as a function of the independent variable t is,

f(t) = 1.5t+ 0.1t2.

208

2.28.4 LogLog Functions

In frequency domain analysis, log/log functions are commonly used for application of
loads. This is particularly true for random vibration inputs which are commonly specified
on log/log plots. The loglog option allows linear interpolation on a log/log plot so that
only the corner frequencies need be specified. An example follows.

FUNCTION 1
name "my_loglog"
type loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

2.28.5 Random Functions

There are two different types of internal random function distribution: a uniform and
a Gaussian distribution. For both distribution types, the values are randomly generated
according to the range that is input. For details of the RandomLib function, which has a
more general capability see section 2.28.7.

For uniform distributions, the left range number is the lower bound and the right number
is the upper bound, both inclusive. For a Gaussian distribution, the left number is the mean
(or center of the distribution), and the right number is the standard deviation.

The seed determines the seed for a new sequence of pseudo-random numbers, either auto
or a positive integer. The auto option seeds the generator using the computer clock, which
will nearly always give an irreproducible string of random numbers. However for reproducible
results, a manual seed may be given. The sequence of numbers is random, but the same
random sequence of numbers generated from a specific seed is always the same. Please note
that the number 0 acts the same as if you had entered auto as the seed.

Random functions use the pseudo-random number generator in the rand() function of
the C library.

FUNCTION 2
name "some_function"

UNCLASSIFIED - UNLIMITED RELEASE 209

−20 −15 −10 −5 0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
D

F

Value

Mean: −1 StndDeviation: 4

Figure 35: Example Gaussian output.

type random
distribution Gaussian
range -1.0 4.0
seed auto

END

That example would produce the distribution shown in figure 35:

Parameters are shown in Table 67:

Table 67: Random function parameters

Parameter Type Values
distribution string uniform or Gaussian
range two Real numbers lower and upper bound of distribution (uniform)

OR mean and standard deviation (Gaussian)
seed string/integer auto OR any integer

2.28.6 SamplingRandom Functions

The random pressure loading defined in section 4.4 provides a means of applying a pres-
sure load with a specified spatial and temporal correlation. In many cases, the desired

210

random function is a function of time only. In those cases the SamplingRandom function
provides a mechanism for applying the load.

Keyword Values Default Description
type string required must be “SamplingRandom”
cutoff_freq Real required† cutoff frequency (in Hz)
omega_c (ωc) Real required† cutoff frequency (in rad/s)
DeltaT Real π/ωc coarse time step
ntimes integer 5 # of terms in time interpolation
correlation_function integer defaults to sin(x)/x function for time interpolation
scale_function integer defaults to σ(z) = 1

†Either “cutoff_freq” or “omega_c” must be specified, but not both.

Table 68: SamplingRandom function parameters

Note that ωc = 2π×cutoff_freq, and that only one of the two parameters omega_c and
cutoff_freq can be specified. More detailed descriptions of these parameters are given in
section 2.14.13. Random time functions can be used to specify any type of random load,
including pressure loads, force loads, acoustic loads, etc. Below we give an example for the
case of an acoustic load.

LOAD
sideset 1

function = 1
acoustic_vel = 1.0

END

FUNCTION 1
type SAMPLINGRANDOM
cutoff_freq 1000
deltaT 8.0e-4
ntimes 5

END

The SamplingRandom function is a special case of a zero mean, unit variance Gaussian func-
tion. Sampling methods allow a reduced memory method of computing the time realization.
In a transient analysis, the time integration step should be less than the coarse time step,
“DeltaT”. Statistics for the functions may be output by specifying “input” in the “echo”
section of the input file (see section 2.7).

2.28.7 RandomLib Functions

The random functions defined in section 2.28.5 provide a simple, computationally effi-
cient method of applying a random function. However, in many cases, a random load on a

UNCLASSIFIED - UNLIMITED RELEASE 211

structure may need some sort of spatial correlation with other loads on the structure. The
RandomLib function was created to address this need.4

Run time parameters for “RandomLib” functions are listed in Table 69, and an example
is provided in Figure 36. Each parameter is described in more detail below.

As currently implemented (starting with version 2.6), the randomlib function operates
only by reading data from an external exodus data file. The data file is an Exodus file
that contains nodal scalar loadings applied to a nodeset that covers the same nodes as the
sideset. This sideset is assumed to have the name “surface_1_nodes” where the “1” in this
case corresponds to sideset 1. These nodal loadings are typically generated within Matlab
code and merged with the Exodus file definition. In the future, a more complete capability
will be integrated within Sierra/SD directly.

Currently this function has been applied only to apply a scalar function on the nodal
locations of a single sideset in the model. Such functions can be used to apply pressures
(which are applied as piecewise linear functions within the elements). It can also be used to
apply prescribed accelerations at the nodal locations.

Keyword Values Description
type randomlib required to specify function
interp temporal interpolation scheme

none=nearest
linear=linear interpolation

sideset integer sideset where pressures are applied

Table 69: RandomLib function parameters

function 55
type=randomlib
interp=none
sideset=1

end

Figure 36: Example RandomLib Function Specification

type The specification of “type=randomlib” is required to reference the randomlib function
and its capabilities.

interp The restart file contains time samples of a random function. Sierra/SD references
these values at each time step to properly load the function. The actual value returned
depends on this interpolation, as is illustrated in Figure 37.

4 The RandomLib function is an external library interface to Sierra/SD . Additional functionality as
well as its interface to other applications is described in separate documentation.

212

sideset The pressure is applied over a single sideset of the model. This sideset must match
the definition in the load section.1

−1

 1

 0

Time

RandomLib Sample Data

Salinas Sample Times

Figure 37: RandomLib Temporal Interpolation. Because of different time steps in the Ran-
domLib data library and the Sierra/SD time step algorithm, the function value returned
depends on the time interpolation algorithm. With “interp=none”, the first value returned
to Sierra/SD is about -1.0, as that is the nearest time sample in the data. With “in-
terp=linear”, the value returned is about -0.6. Note that round off can cause odd behavior
with “interp=none”, even if the two data sets have the same fundamental time step.

2.28.8 SpatialBC Functions

The Spatial boundary condition function is used when applying boundary conditions
from a variable in the Exodus file. It is very similar to the randomlib function except that
you can specify a nodeset directly instead of using a nodeset associated with the specified
sideset.

The variable to read from theExodus file is specified with the parameter “variable_name”.
For example to read accelerations in the Z direction:

function 1
type = spatialBC
nodeset 1
variable_name AccZ

end

1 The data for the Exodus data file is usually provided using specialized tools such as mkrandloadrst.
The sideset provides information about the extent of the load, and for pressure loads, it is required to identify
the faces upon which the load is applied. The actual time history data is associated with a nodeset which
includes the same nodes as the sideset.

UNCLASSIFIED - UNLIMITED RELEASE 213

2.28.9 ReadNodal Functions

The readnodal function reads in time history data from the Exodus file, and applies
that data as a time and spatially-dependent load. Currently this function has been applied
only for reading in volume velocities for acoustic point source analysis. However, with minor
modifications it could also be used for applying time and spatially-dependent force on the
structure.

As currently implemented, the readnodal function operates only by reading data from
an external exodus data file. The data file is an Exodus file that contains time histories
of first or second derivatives of volume velocities applied to the entire mesh file. The name
of the variable that is stored in the Exodus file is specified with the exo_var keyword.
Run time parameters for readnodal functions are listed in Table 70, and an example is
provided in Figure 38. The keyword exo_var must be followed by two keywords, the first
one specifying whether the data is a scalar or a vector, and the second specifying the name
of the variable on the Exodus database. Thus, Table 70 specifies that a scalar variable with
the name volume_acceleration should be available on the Exodus database. The
interp parameter is the same as was described for the randomlib functions. It specifies
the type of temporal interpolation.

As currently implemented, the readnodal function first looks for a nodal variable with
the specified name (i.e.,volume_acceleration in the example above). If no nodal
variable is found with that name, it then looks for an element variable with the same name.
If no element variable is found, it searches for a face variable. If none of these are found, the
code will error out.

Keyword Values Description
type readnodal required to specify function
interp temporal interpolation scheme

none=nearest
linear=linear interpolation

exo_var scalar volume_acceleration either scalar or vector, followed by variable name

Table 70: ReadNodal function parameters

function 55
type=readnodal
interp=none
exo_var scalar volume_acceleration

end

Figure 38: Example ReadNodal Function Specification

214

2.28.10 ReadNodalSet Functions

The ReadNodalSet function reads in nodal data from a nodeset in the Exodus
file, and applies that data as a time and spatially-dependent load. Note that this is the
same functionality as the readnodal function, except that it only reads data on a nodeset
instead of on the entire mesh. Currently this function has been applied only for reading in
volume velocities for acoustic point source analysis. However, with minor modifications it
could also be applied for applying time and spatially-dependent force on a structure.

Run time parameters forReadNodalSet functions are listed in Table 70, and are the
same as for the readnodal, except for the specification of a nodeset parameter. The
force is applied over a single nodeset of the model. This nodeset must match the definition
in the load section.

function 55
type=readnodalset
interp=none
nodeset=1
exo_var scalar volume_acceleration

end

Figure 39: Example ReadNodalSet Function Specification

2.28.11 ReadSurface Functions

The ReadSurface function reads in data from either the entire Exodus file, or a
nodeset or sideset that covers the surface of interest. If a set is specified in the FUNC-
TION block, then data corresponding to that set is read in from the Exodus file. Oth-
erwise, the nodal variable is read from the entire mesh as a nodal variable (rather than a
nodeset variable). Once this data is read, Sierra/SD integrates the data over the surface
to create a time and spatially-varying forcing function. One difference between this function
and the readnodal function is that the data is fromReadSurface is used in a surface
integration to generate the load, whereas the data from readnodal does not need to be
integrated, and thus can be inserted directly into the force vector.

This function is used to read in surface velocities or accelerations which are used as a
boundary condition for acoustic analysis. It can also be used for applying time and spatially-
dependent pressure loads on a structure. For this case, the pressure output variable currently
only outputs element data for pressures read from a sideset. Nodal pressures, like those used
in randomlib functions, are output as 0.

As currently implemented, the ReadSurface function operates only by reading data from
an external exodus data file. The name of the variable to be read in from the Exodus file
must be specified in the input deck using the exo_var keyword. Also, the variable must

UNCLASSIFIED - UNLIMITED RELEASE 215

be specified to be a scalar or a vector, using the syntax given in Figure 40. An example for
ReadSurface functions is given in Figure 40. The interp is the same as was described
for the randomlib function. Note that the sideset keyword must match that which is
specified in the Loads section.

In Figure 40, the keyword exo_var specifies the type of data (i.e. vector or scalar),
and the name of that variable on the Exodus file. In the case of a vector, the name of the
variable as given in the input deck should be the base name of the variable, without the
suffix of ‘x’, ‘y’, or ‘z’. For example, for the data given in Figure 40, a vector nodal variable
with name ‘vel’ should be available in the Exodus file. Thus, the data in the Exodus file
would have names velx, vely, and velz. In the case of scalar data, the base name given
(i.e. vel in Figure 40), should match exactly the name of the nodal variable in the Exodus
file.

function 55
type=readsurface
interp=none
nodeset=1
exo_var vector vel

end

Figure 40: Example ReadSurface Function Specification

2.28.12 User Defined Functions

A user defined function capability has been added to Sierra/SD to permit application
of generic functions that cannot be readily evaluated using built in functions. Note the
following.

1. User defined functions are typically quite slow.

2. By default, user defined functions are evaluated at each application point on the struc-
ture (i.e. each node in a nodeset). Thus, they must be evaluated many times. This
with their slow evaluation can result in significant time for their evaluation. If you can
do the problem another way, it is strongly recommended that you do so.

3. User defined functions are impossible to fully test in our test environment.

4. User defined functions may be less robust than other methods.

Sierra/SD uses the run time compiler (RTC) environment that was developed for Ale-
gra.34 This environment was chosen for several reasons, but the primary goals are to provide
capabilities that cannot be performed in other ways, and to do with a simple, portable
system.

216

The Alegra RTC is a library that compiles a subset of the “C” language in run time. The
user is referred to the RTC documentation for details of the library. The RTC function is
referenced in the Sierra/SD input just as any other function. For example,

LOADS
nodeset 1

function=1
force=0 0 1

END

FUNCTION 1
type=USER
rtcfile=’example.cc’

END

The function “type” is defined as “USER”. In addition, the “rtcfile” parameter must be
specified. The rtcfile points to the file containing the source for the function. Typically
the file name has a “.cc” extension (to indicate that it is C++ source), but any filename is
acceptable, and either a relative or a full path may be specified.

The permitted parameters are listed in the following table.

Parameter Argument Description
rtcfile string the file name containing source. Required!
timeonly none flag. If this exists, no spatial dependence

is allowed in the function.

2.28.12.1 The Source File: The rtcfile points to a file containing source code to be
compiled. This is a subset of the “C” language. There are some idiosyncrasies which we list
here.

• Comment fields follow C (not c++) conventions.

• No function definitions are allowed.

• Data is passed to and from Sierra/SD using specifically named, predefined variables.
These are listed in Table 71.

We provide an example below for the case of a force that is inversely proportional to the
deformed Z coordinate of each node in a sideset. This distance is labeled R in the script, it
is checked for divide by zero, a function value is computed, and the value returned in the
retvar variable. This function will be run on all the nodes in a side set.1

1 The HowTo document has an example of an RTC analysis together with suggestions on debugging.

UNCLASSIFIED - UNLIMITED RELEASE 217

Variable I/O Description
time input the current time for the function evaluation.
retvar output The function return value
coord input The undeformed coordinates of the node
disp input The deformation vector. Dimension=7

velocity input The velocity. Dimension=7
acceleration input The acceleration on this node.

nodeid input The global node ID of this node.
the unmapped Exodus node id (1:N)

Table 71: Predefined RTC variables

double R=disp[2]+coord[2];
retval=1e10;
if (abs(R) > 1e-10){

retval = 1.0 / R;
}

Note that run time compile functions are currently not compatible with prescribed bound-
ary conditions. A fatal error is encountered in Sierra/SD if one tries to use a run time
compile function with prescribed boundary conditions.

2.28.13 Plane Wave

Plane wave functions are applied primarily in scattering problems where a load on a
surface is analytically described as an incident plane wave. We define the wave in terms of
the following parameters.

Keyword Values Description
type plane_wave identifier keyword
Direction 3 reals direction of the wave, ~d
material string acoustic material
K0 real wavenumber, ko
origin 3 reals wave origin, ~xo

The material specification provides the parameters, co (the wave speed), and ρo (the fluid
density). In terms of these parameters, and the pressure amplitude, Po, which is specified in
the loads section, the CW plane wave can be described as follows.

P = Po · cos
(
kod̂ · [~x− ~xo]− kocot

)
(52)

Where d̂ = ~d/|~d| is the normalized direction vector. For scattering problems, a velocity is

218

also computed. The velocity for a plane wave is,

~v = P

ρoco
· d̂ (53)

An example is shown in Figure 41.

function 65
type = plane_wave
Direction = 1 0 0
Origin = 0 0 0
K0 = 1000
material = air

end

material air
acoustic
c0=332.0
density=1.29

end

Figure 41: Example PlaneWave Function Specification

2.28.14 Planar Step Wave

The planar step wave, keyword=“planar_step_wave” provides a means of applying a
traveling exponential step wave to an acoustic scattering problem. The function provides
both a pressure on a structure and a velocity load on an acoustic model. Parameters are listed
in Table 72. The exponential step wave is useful for verification problems in scattering, but
is not realizable physically. The pressure definition is similar to the plane wave, but employs
a Heaviside step function, H(t− t′), where t′ = d̂·[~x−~xo]

co
.

P = Po · e−β·(t−t
′)H(t− t′) (54)

A standard planar step wave function can be defined by using β = 0. This is the default
behavior if no beta parameter is specified.

2.28.15 Spherically Spreading Wave

A spherically spreading wave, keyword=spherical_wave, computes the response of
a point source excitation in an acoustic medium. The function applies both a pressure on

UNCLASSIFIED - UNLIMITED RELEASE 219

Keyword Values Description
type planar_step_wave identifier keyword
Direction 3 reals direction of the wave, ~d
material string acoustic material
origin 3 reals wave origin, ~xo
beta real exponential decay factor, β

Table 72: Planar Step Wave Parameters

Keyword Values Description
Type spherical_wave identifier keyword
Origin 3 reals wave origin, ~xo
C0 real acoustic sound speed
reference_location 3 reals reference location ~R
material string acoustic material (alternate to C0)
pressure_function integer new function for user supplied pressures

Table 73: Spherical Wave Parameters

Structure

Spherical Wave

Origin

Sample Location

Reference Location
x

xo

1

R

Figure 42: Spherical Wave Geometry

220

the structure and a velocity load on an acoustic model. Parameters are listed in Table 73.
Figure 42 illustrates the geometry.

A spherical wave is used only in transient dynamics analyses. An example input is
described in Figure 43. Function 1 in the example defines the spherical wave function, which
describes the geometry of the loading. The time history of the loading is referenced in the
function, function 11 in the example, must be a simple function of time. It could be a linear
function, a runtime compiled function or a table. It cannot be a function of space and time.

LOAD 10
sideset 1001

acoustic_vel 1.0
function = 1 //

sideset 50000000
pressure 1.0
function = 1

END

FUNCTION 1
type = spherical_wave
origin = 0 1000 0
pressure function = 11
C0 = 4872 // wave velocity
// material = 1000 //material for acoustic medium

END

FUNCTION 11
Data 0.0 0.00000
Data 1e-6 0.00001
Data 2e-6 0.00002
...

END

Figure 43: Spherical Wave Example

2.28.16 Shock Wave

For Navy scattering applications, a “shock wave” function provides a numerical function
for analysis of exterior shock loading. The parameters of the loading are listed in Table
74. Details of the theory and implementation are available from the Navy Surface Warfare
Center, Carderock Division (NSWC/CD). An example input is shown in Figure 44.

The “free_surface_flag” indicates generation of an applicable image source above the surface
of the water. The possible values of this flag are given in Table 75. In this routine, “z” is

UNCLASSIFIED - UNLIMITED RELEASE 221

Keyword Values Default Description
type shock_wave required identifier keyword
charge_weight real required in pounds of TNT
charge_location 3 reals required explosive location
waterline_depth real 0
free_surface_flag integer 1 see Table 75
material string required acoustic material

Table 74: Shock Wave Parameters. input coordinates are in inches.

function 67
type = shock_wave
charge_weight = 10
charge_location = 100.0 0. 50
waterline_depth = 10
free_surface_flag = 1
material = water

end

material water
acoustic
c0=4872
density=62.4

end

Figure 44: Example Shock Wave Function Specification

free_surface_flag Meaning
1 similitude TNT shock without free surface
2 similitude TNT shock with free surface at waterline_depth
3 similitude TNT shock + Hick’s bubble without free surface
4 similitude TNT shock + Hick’s bubble with free surface

Table 75: Free Surface Flag Options

222

upwards and normal to the water surface. The depth is the distance below the water surface,
i.e.

waterline_depth = zwaterline − zcharge
where zcharge is the z component of the charge location. If the free surface flag is not specified,
no effects of the surface are included.

2.28.17 FSI

For fluid-structure interaction (FSI) applications, the “FSI” keyword provides a means
of applying a prescribed nodal pressure load along the wetted surface. The FSI function is
referenced in the Sierra/SD input as follows,

Loads
sideset 1

pressure 1
scale 1
function 1

End

Function 1
type = FSI

End

The above input file assumes sideset 1 is the wetted surface. Sierra/SD will communicate
nodal locations of the sideset to sigmaCFD. These are the locations at which pressures are
sent to Sierra/SD . Then, Sierra/SD calculates a consistent load based on the values at
the nodes. Finally, if restarts are needed, “restart=auto” is required in the solution section.
Sierra/SD also supports two-way coupling for Fluid-Structure interaction. Interpolation
from structural nodes to fluid nodes and from fluid nodes to structural nodes is implemented
and unit tested. Figure 45 shows the infrastructure for FSI.

2.29 MATRIX-FUNCTION

This section provides for input of a matrix function as is used in a cross correlation matrix
for input to a random vibration analysis. In the limit of a single input these reduce to a
single function (as described in the previous section). Note that a matrix-function can have
arbitrary symmetry and can be complex. An important feature of the matrix-function is
that each entry of the matrix is a function of frequency (or time).

UNCLASSIFIED - UNLIMITED RELEASE 223

Figure 45: Fluid-Structure Interaction (FSI) Infrastructure

The Matrix-Function is illustrated in the following example.

MATRIX-FUNCTION 1
name ’cross-spectral density’
symmetry=Hermitian
dimension=2x2
nominalt=20.1
data 1,1

real function 1 scale 1.0
data 1,2

real function 12
imag function 121 scale -3.0

data 2,2
real function 22 scale 0.5

END

Matrix functions have the following parameters.

NAME allows you to optionally enter a string by which the matrix-function will be iden-
tified in subsequent messages.

SYMMETRY identifies the matrix symmetry. Options are “none”, “symmetric”, “asym-
metric” and “Hermitian”. If the matrix is not square, only “none” can apply. The
default for this optional parameter is “symmetry=none”.

DIMENSION specifies the dimension of the matrix. If not specified, it defaults to 1x1.
The dimension is specified as the number of rows, an “x” and the number of columns.
No space should be entered between the terms.

224

DATA Each data entry specifies one entry in the matrix-function. The data entry must be
immediately followed by the matrix location specified as a row, column pair. Again, no
spaces may be inserted in the location entry. The data parameters uses two keywords.

• “real” identifies the real component of the entry. It must be followed by a function
reference (see section 2.28), and optionally by a scale factor.
• “imag” identifies the imaginary component of the entry. It must be followed by a

function definition, and an optional scale factor.

NOMINALT Used only for echoing the matrix values. If input is specified as an Echo
option (see section 2.7) general information from the matrix function are written to
the log file (the .rslt file). If, a nominalt entry also exists, then the matrix entries are
written for that nominal time (or frequency). Only one such output can be specified.
It provides a means of checking the input to assure the matrix values are correct at a
single time (or frequency) value.

2.29.1 Alternate Table Interface

For a large number of inputs, the individual specification of each function on each matrix
element is both tedious and inefficient. An alternate Table input is provided. See section
2.30 for details about tables. Application of table input to matrix-functions requires three
tables:

1. A table for the real valued data.

2. A table for the imaginary valued data.

3. A table which associates each nonzero row and column of the matrix-function with
appropriate rows of the real valued and imaginary valued data.

Three new keywords are introduced:

Real Table which is a two dimensional table containing all the real valued entries for each
entry in the matrix. Each column contains the frequency data for that entry.

Imag Table which is a two dimensional table containing all the imaginary (complex valued)
entries for each entry in the matrix. Each column contains the frequency data for that
entry.

Table Index which is a two dimensional table providing a map from the matrix elements to
the data columns in the real and imag tables. This index is a 4 column table. Columns
1 and 2 are the row, column index of the matrix-function. Column 3 is the row index
of the real data, while column 4 is the row index of the imaginary data. If the value
in column 3 or 4 is zero then the corresponding data is zero See the example in Figure
46.

UNCLASSIFIED - UNLIMITED RELEASE 225

Note that the table entry has a fixed step, so the same number of values must be provided
in each column.

Matrix-Function 1
name ’spectral density’
dimension=2x2
symmetry=Hermitian
REAL TABLE RealData
IMAG TABLE ImagData
TABLE INDEX idx

END

Table RealData
size=3 550 // 550 freq samples, 3 matrix locations
delta=1 0.5
datafile=’realdata.txt’

END

Table ImagData
size=1 550 // 550 freq samples, 1 matrix location
delta=1 0.5
datafile=’imagdata.txt’

END

Table idx
size=3 4
rowfirst // transpose matrix for simpler input
dataline

// row col real imag
1 1 1 0 // row=1, col=1 with 1st real data, no imag
1 2 2 1 // row=1, col=2 2nd real data, 1st imag
2 2 3 0 // row=2, col=2, 3rd real data row, no imag

END

Figure 46: Example Input for a Matrix-Function using Tables

Each matrix entry in the matrix-function must reference a row of a two dimensional
table. The columns of data in the table contain the frequency response for that entry. The
number of rows required for each table depends on the matrix symmetry and on the index
in the “Table Index”.

The table entry for matrix functions is an alternate means of providing input which is
provided primarily for efficiency reasons. It cannot be mixed with the individual methods,
i.e. if the table keywords are used, the “data” keyword must not be used.

226

2.30 Table

The Table section permits construction of tabular data in 1 to 4 dimensions. Tables
must be referenced in other structures for their data to be useful. Tables are characterized by
data structures which are sampled at uniform intervals. Tables offer the following benefits.

• They provide implicit linear interpolants for values between tables.

• They are fairly flexible structures which are more memory friendly than functions (for
some applications).

• Tables are the only way to introduce multi-dimensional data.

Each Table includes a number of required and optional parameters, as shown below.

Table 76: TABLE Section Options

Parameter Default Description
dimension optional number of dimensions in the table
size required table size in each direction
datafile required ASCI file containing the values at each point
dataline required flag indicating that all data values will follow.
origin zero origin of the table (for scaling)
delta 1 interval between points in each direction
rowfirst transpose data on input

The dimension identifies the shape of the table. For example, dimension=2 indicates a
table of xy values. All other quantities depend on this dimension. Note: after release 2.5,
this parameter is no longer required. The dimension is extracted from the size.

The size parameters indicate the individual hypercube dimensions of the table. For
example, in a table of dimension=2, the size parameter indicates the number of rows and
columns in the table. The total number of entries is the product of all the terms in the size.

The datafile parameter contains the name of a text file containing all the data values
in the table. The values are entered with the first dimension cycling faster. Thus, in a
dimension=2 table, all the entries for column 1 are first entered, followed by column 2, etc.
The layout of the file is not important. Data values are read one at a time as they are
separated by white space. There must be exactly the correct number entries in the file. No
comments are permitted in the datafile, but white space is permitted.

The dataline parameter indicates that the tabular data is included in this file following
the parameter. If dataline is specified then datafile must not be. The format is identical
to the datafile. For performance reasons, it is best to use dataline for smaller data sets,
and datafile for larger.

UNCLASSIFIED - UNLIMITED RELEASE 227

The rowfirst is provided to transpose the data on input. It applies only to 2D tables.
If this keyword is present, then the table values will be interpreted as if the table had been
transposed.

Both the origin and the delta parameters are optional values provided for interpo-
lation. The implicit integer entries of the table are converted to real values for function
evaluation by use of these parameters.

Function evaluations within the range of the table can be linearly interpolated. The
range in each direction is determined by the following.

origini < rangei < origini + (deltai · sizei) (55)

Evaluations of the table for regions outside the valid range result in a warning message.

In contrast to a function (see section 2.28), tables require memory only as needed. All
processors store the full input file in memory. However, tables can store a large amount of
data in the datafile. This file is opened and data is read from it only as needed. For this
reason, tables are preferred over functions when only a few processors may need access to a
large amount of data. Obviously, tables are the only option when a function of more than
one variable is required.

An example of a two dimensional table definition is shown below.

Table example-2d-table
dimension=2
size = 200 300 // note: don’t put in an x
origin 1.0 0.0 // optional. defaults to 0 0
delta 1.0 0.9 // optional. defaults to 1 1
datafile ’junk.txt’

END

2.31 CBModel

TheCBModel section provides a method of specifying information related to a Craig-
Bampton model reduction of the entire structure. It is required by the CBR method (section
2.1.5).

The “interface” is that portion of the model which will interface to the external structure.
The interface is defined by collections of nodes specified as nodesets or sidesets. After
eliminating boundary conditions, the active degrees of freedom on the nodes become the
interface.

228

Table 77: CBModel Parameters

Keyword type Description
nodeset integer Exodus nodeset. Must include the nodeset id.
sideset integer Exodus sideset. Must include the sideset id.
format string specifies the output format.

matlab - Matlab .m format
dmig - nastran DMIG format
netcdf - netcdf format†

file string specifies the file name for output.
GlobalSolution string ‘yes’ to compute the eigen solution of the

reduced system.
inertia_matrix string ‘yes’ to compute the inertia tensor

sensitivity_method string specifies the method to compute cbr sensitivities.
constant_vector - constant vector method
finite_difference - finite difference method

†The netcdf format is the database upon which exodusII is built. A translator from this format to
nastran output4 format is available.

The supported keywords for the CBMODEL section are shown in Table 77. The keywords
are described below.

nodeset: The nodeset keyword specifies the nodes to be placed in the interface. Nodesets
are defined in the Exodus file. An integer nodeset ID must follow the nodeset keyword.
Alternatively, a list of nodesets (in Matlab type format) can be specified. This is
identical to the history file definition of section 2.9.

sideset: A sidesetmay also be used to specify the interface nodes. Any number of nodeset
and sideset combinations are allowed. The interface is the union of all such entries.

format: The preferred format is the netcdf format. This is actually a superset of the
Exodus format. It is the format that must be used if the reduced model is to be
inserted into another Sierra/SD model as a superelement. The dmig format is for use
with nastran, and will probably be dropped in the future. It contains only the reduced
system matrices (no maps, coordinates, etc). The Matlab format is a convenience.

Note that the netcdf format may be converted to the other forms using a stand alone
translator, ncdfout.

file: The file keyword is required to specify the output file name.

GlobalSolution: As a convenience, we will optionally compute the eigen values of the
reduced system. It is strongly recommended that these values be compared with the
eigenvalues of the full system to ensure that the model has converged over the frequency
of interest.

UNCLASSIFIED - UNLIMITED RELEASE 229

inertia_matrix: The inertia matrix defined in section 2.1.5 is optionally computed and
written to the super-element files with i the reduced mass and stiffness matrices.

sensitivity_method Currently the constant vector and finite difference methods are avail-
able for computing sensitivities for Craig-Bampton reduction. The default is the con-
stant vector method.

The constraint modes and fixed interface modes that were used as a basis to generate
the reduced order system may be output to the exodus file by specifying the “displacement”
option to the Outputs section (2.8). The fixed interface modes are output first, followed
by the constraint modes.2 These modes may be visualized and evaluated using any of the
standard tools.

Data in Table 78 will be written to a file. The Output Transfer Matrix (or OTM)
depends on data in the History section (see section 2.9). Specifically, the output nodes
and elements, and the output variables are specified in the history file as if they were to
be output to a history file. For simplicity, and because the OTM describes a linear transfer
matrix, only a limited subset of results are provided. In particular, displacements and the
natural strains and stresses may be written. The transfer matrix provides the following
computation.

 u
ε
σ

out

=

 OTM

 [q
uint

]

=

 Φu Ψu

Φε Ψε

Φσ Ψσ

 [q
uint

]

Here q is the amplitude of the internal constraint modes (typically computed in the next
level analysis), and uint is a vector of interface displacements. The fixed interface modes
(eigen modes of a clamped boundary) are represented by Φ, and the constraint modes by Ψ.

The left hand side vectors represents internal results (displacement, strain and stress)
which are computed from the interface results. Any of the output results may be omitted,
and the OTM will retain only nonzero components. For example, if only displacements are
required, the matrix reduces to [Φu Ψu]. The OTM matrix is a rectangular matrix, and it is
typically full. An example CBModel section follows.

CBMODEL
nodeset=1:2 // nodes from nodeset 1 and 2
format=netcdf // use a netcdf format file

2 The eigenvalues of the fixed interface modes are associated with each mode. For the constraint modes
an integer index replaces the eigenvalues.

230

Table 78: Data output for Craig-Bampton Reduction

Variable Description
NumC number of constraint modes
NumEig number of fixed interface modes

Kr Reduced stiffness matrix.
Mr Reduced mass matrix.
Cr Reduced damping matrix. Only available for dashpots

and block proportional damping.
cbmap A two column list providing a map from each interface

degrees of freedom to the node and coordinate direction
of the global model.
The first column of this list is the node number (1:N) in
the structure. The second column indicates the coordi-
nate direction as follows.

Number Description
1 x
2 y
3 z
4 Rotation x
5 Rotation y
6 Rotation z
7 acoustic pressure

The “cbmap” has the same number of rows as Kr or Mr.
OutMap A map of the nodes in the output transfer matrix.

OutMap(i) is the global node number for each node in
the output. There are always 6 rows of output for each
node. Thus OutMap(1) corresponds to rows 1 through 6
in the OTM.

OTM Output Transfer Matrix to provide a transfer function
from the interface dofs to internal degrees of freedom or
other results.

OutElemMap A map of the elements in the output transfer matrix,
OTME. OutElemMap(i) is the global element number
for each element in the output. There are always 6 rows
of output for each element.

OTME Output Transfer Matrix to provide a transfer function
from the interface dofs to internal elements.

UNCLASSIFIED - UNLIMITED RELEASE 231

file=’junk.ncf’
END

The reduced inertia matrix I for Craig-Bampton Reduction defined in section 2.1.5 may
be computed and written to the super-element files with the reduced mass and stiffness
matrices. I can be written to the results file in either netcdf, Matlab or DMIG format. In
the CBMODEL section

CBMODEL
nodeset 1
format = netcdf
file = cbmodel.ncf
globalsolution = yes
inertia_matrix = yes

END

the inertia_matrix = yes-no line requests the output of the inertia tensor. The default value
of inertia_tensor is no.

NOTE:
In release 2.2 we released the OTM output capability. This permits an analyst
to output the reduced order model of the entire structure for use in another
code that supports superelements (such as MSC/Nastran). In a subsequent
release, we will add the capability to input these matrices as a superelement in
Sierra/SD . At that point one could perform a Craig-Bampton reduction to
generate a reduced order model of that portion of the structure. A follow up
analysis could use this as a superelement. See details in Figure 47.

2.31.1 Sensitivity Analysis for Craig-Bampton models

Sensitivity output for Craig-Bampton reduction requires both the SENSITIVITY
block described in section 2.34, as well as the sensitivity_method keyword in the
CBModel block. The sensitivity_method defaults to the constant vector method
unless otherwise specified.

The sensitivity output from a Craig-Bampton reduction is different than that typically
seen in eigenvalue or transient solutions. In the case of a Craig-Bampton reduction, the
sensitivities that are output consist of partial derivatives of the reduced mass and stiffness
matrices with respect to the parameters. We give a brief description here, and refer to the
theory manual for further details (see section 1.13.2 of the theory manual).

The reduced stiffness matrices in Craig Bampton reduction is computed via the trans-
formation

κ = T TKT (56)

232

Complex mesh
Component

K, M, OTM

superelement
matrices

Initial Analysis

Analysis 2a Analysis 2b K, M, OTM

superelement
matrices

Figure 47: An initial analysis using CBR can be applied to reduce a complex component to
much smaller matrices. In subsequent analyses the superelement replaces the complex com-
ponent in the system analysis. There is little loss of accuracy, but significant computational
benefit.

UNCLASSIFIED - UNLIMITED RELEASE 233

where T is the Craig-Bampton transformation matrix, K is the stiffness matrix, and κ is the
reduced stiffness matrix. A similar expression can be written for the reduced mass matrix.
Sensitivities of κ with respect to a parameter p can be computed with the constant vector
and finite difference approaches.

The constant_vector approach makes the approximation that the transformation
matrix T = To does not change with the parameter p. Consequently, the sensitivity can be
computed as

dκ

dp
≈ T To (K(p+ ∆p)−K(p))To

∆p (57)

Since To represents a truncated modal space, this approximation is not always accurate.

The finite_difference method uses a somewhat different approach. Given updated
system stiffness K1 = K(p+ ∆p) and transformation matrix T1 = T (p+ ∆p), direct forward
differences are used to evaluate the sensitivity

dκ

dp
≈ T T1 K(p+ ∆p)T1 − T To K(p)To

∆p (58)

Unlike the constant vector approach, the finite difference method will converge to the exact
sensitivities as ∆p goes to zero. This is true provided that there are no repeated modes in
the system.

One additional complexity that arises in sensitivity analysis of Craig-Bampton reduced
models is when there are repeated modes in the transformation matrix T . Since the ordering
of repeated modes in any eigenvalue problem is arbitrary, the perturbed transformation
matrix T1 could have a different ordering of the repeated modes than To. This would corrupt
the difference operation in equation 58. However, in the case of the constant vector method
this is not an issue since there is only one transformation matrix To. For these reasons, in the
case where the user suspects repeated modes may be present in the structure, we currently
recommend using the constant vector rather than the finite difference approach.

The output from a sensitivity analysis of a Craig-Bampton model is different than other
types of sensitivity analysis. The output is written to either a matlab or netcdf format,
depending on the format parameter (see Table 77). The outputted quantities are the
derivatives of the stiffness and mass matrices with respect to the various parameters. Thus,
if there were two sensitivity parameters p1 and p2, the output quantities would be

∂κ

∂p1
,
∂κ

∂p2
(59)

where κ would be the reduced mass and/or stiffness matrix. The dimensions of these sensi-
tivity matrices would be the same as the dimensions of the corresponding reduced mass and
stiffness matrices.

The output matrix derivatives given in equation 59 are useful for studying how the
reduced matrices change with the parameters. These matrix derivatives can also be used
in subsequent analysis with the corresponding superelements. For more details, we refer to
section 3.41.

234

SOLUTION
case eig

eigen
nmodes=500
modalfilter=mpf1

END

MODALFILTER MPF1
remove 1:999
cumulative mef 0.8 0.8 0.8 0.2 0.2 0
add 99:101,103

END

For this example, the following actions are performed in the filter.

1. all modes below 1000 are removed. Note, since only 500 modes are computed, all
modes are removed from the list.

2. modes which contribute most to a cumulative modal effective mass are next added.
Modes required for 80 percent contributions to the x, y, and z directions are added. In
addition, modes needed to achieve 20 percent of the rotational terms for x and y are
added. Since the contribution for rotation about z is zero, no modes are added there.

3. Finally, if modes 99, 100, 101 and 103 are not already included, they are also added.

Figure 48: Example ModalFilter Input

2.32 ModalFilter

The modal filter can be used to control the modes retained in a calculation for subsequent
analysis. This can significantly improve performance with little effect on the desired response.
For example, a shell structure may have many hundreds of modes contributing to the normal
mode response, while only a few of these modes are likely to interact with the loads.3

During eigen analysis or CBR reduction, the usual number of modes (nmodes) are
computed. These modes are filtered, and only a subset are written to the Exodus file or
used in subsequent analysis. An example input is shown in Figure 48.

Each entry in the modal filter section consists of two parts: an action (like remove or
add) and an application space. The application space for the “add” and “remove” space is an
integer list with a format much like Matlab. See section 2.33 for more details. Valid action
keywords are listed in Table 79.

3The modes of large ship are a good example. Only a few of the modes contribute to global bending or
torsional modes. The remainder are local plate modes which may not be of interest to the analysis.

UNCLASSIFIED - UNLIMITED RELEASE 235

Keyword Application Space
remove integer list or "all"
add integer list or "all"

cumulative mef 6 fractions
cumulative nmef 6 fractions

Table 79: Modal Filter Keywords

remove Removes modes in the application space from output.

add Adds modes in the action space.

cumulative mef Adds modes which contribute to the modal effective mass. Following
this keyword sequence, 6 fractions are entered, one for each of the 6 rigid body mode
contributions. The modes are sorted and modes are kept that contribute most to the
modal effective mass. When the fractional contribution exceeds the threshold, no more
modes are added for that direction. Contributions from each direction are combined
(unioned) and added to the list of modes kept.

The 6 fractions following the keyword indicate the threshold for each coordinate di-
rection. Each fraction must be between 0 and 1, inclusive. A value of zero means no
modes are retained. A value of unity retains all modes.

cumulative nmef Adds modes which contribute to the normalized modal effective mass.
This option is identical to the “cumulative mef” option except that the terms are
normalized such that the total contribution from all computed modes sums to one.

Modal Filter Theory

Details of the computation for the modal participation factor are found in section 2.1.17.
Specifically, there is one equation of interest.

MPF =
√∑

i,j

(
∑
k

Γkij)2 (60)

where

Γkij = RT
i M

kvj√
(RT

i MRi) (vTj Mvj)
(61)

Here Γkij is the modal participation factor for eigenvector vj with respect to rigid body
vector, Ri, and measured in block k. Equation 60 is a measure of the system fractional
modal participation factor.

236

2.33 Integer List

An integer list may be required as a parameter for a number of keywords. The list is of
a format similar to that of Matlab. A simple list such as “1,2,3,4” is possible. One may also
provide a sequence such as “1:4” which is completely equivalent to the previous example.
A step value may also be provided, as in “2:2:20”. The second term between the colons is
the step. For this example, we list all even values between (and including) 2 and 20. Such
combinations can also be combined, as in “1,2,3:2:7,11,13,17,19”.

It is recommended that such lists have no spaces. Values can be separated with commas.
However, if placed in quotes, the spaces are permitted, i.e. ’1 2’ is acceptable, but 1 2
without quotations is an error, and 1,2 is preferred.

2.34 SENSITIVITY

Sensitivity to parameters is available for modal analysis,28 Craig-Bampton reduction (CBR),
static solutions and transient solutions. An example input file for modal analysis is given in
the Appendix 1. In the case of CBR analysis, we refer to sections 2.1.5 and 2.31 for a detailed
discussion of how to perform sensitivity analysis. The SENSITIVITY section controls
global parameters related to sensitivity analysis. Sensitivity analysis is not performed in
Sierra/SD unless this section is present in the input file. The following example illustrates
the legal keywords. Valid keywords are identified in Table 80.

SENSITIVITY
values all
vectors 1 thru 3 5 7 thru 9
iterations 8
tolerance 1e-7
Attune
AttuneNodeset 200

END

Keyword argument Description
values string or numbers eigenvalue selection
vectors string or numbers eigenvector selection

iterations integer number of evector iterations
tolerance float convergence tolerance for evectors
attune n/a enable attune output

attunenodeset integer nodeset for reduced model

Table 80: Sensitivity Analysis Keywords

UNCLASSIFIED - UNLIMITED RELEASE 237

The keywords values and vectors are used to control what types of sensitivities are
computed for which cases in the analysis. In modal analysis, these refer to the eigenvalues and
eigenvectors, respectively, and the case numbers represent the mode numbers. In static and
old_transient analysis, vectors refers to the displacement vector results, and values
has no meaning. Also, in modal analysis, eigenvalue sensitivities are always computed when
eigenvector sensitivities are requested for a mode. Allowable values are:

vectors all // compute for all cases/modes
vectors none // compute for no cases/modes
vectors // default, same as all
vectors 1 2 3 5 // cases/modes 1,2,3,5
vectors 1 thru 3 5 // using thru to define range

Omitting the keyword vectors (or values) is equivalent to not requesting those sensitiv-
ities; in other words, it is equivalent to vectors none. The keywords iterations and
tolerance are used in computing eigenvector derivatives. The default values are 10 and
1.0e-06, respectively.

Sensitivity results are scaled by multiplying the derivative with respect to a parameter by
the nominal value of that parameter. In this way, the units of the sensitivity coefficients are
the same as the units of the nominal response results. Furthermore, in order to determine
the absolute change in a response resulting from a relative change in a parameter, simply
multiply the sensitivity of the response with respect to that parameter by the relative change.
For example, multiply by 0.10 for the effect of a 10% change in the parameter.

For eigen analysis, eigenvalue sensitivity is output in the results file in two ways: as
(p)(∆λ/∆p), and in a normalized form, (∆λ

∆p)(p
λ
).

2.34.1 Attune

An interface is provided to the “Attune” test/analysis correlation code supplied by ATA
engineering. The data is written to an external text file, with a file name based on the input
(*.inp) file name. Attune uses a modally reduced model to provide an efficient surrogate of
the full finite element model. Attune applies only to eigen sensitivity analysis, and the eigen
modes must be selected using the values keyword. For output through this interface, the
following two parameters must be defined.

attune: request interface output.

attunenodeset: identification of a nodeset to be associated with the test degrees of freedom.
Note that even if test mode shapes are not available, “Attune” requires the definition
of a reduced space model (using this nodeset). It is required for mode tracking.

238

For details on the use of Attune, please refer to the ATA website and on line documenta-
tion.35

2.34.2 Sensitivity Output

Sensitivity results are output to the same file as the nominal results. The arrangement
of the output varies depending on the analysis. For statics, the nominal result is output,
followed by the sensitivity result for each parameter. For eigenanalysis, the nominal frequen-
cies and eigenvectors are output, followed by the eigenvalue and eigenvector sensitivities with
respect to the first parameter, the second parameter, and so on. The eigenvalue sensitivities
are placed in the time field of each output record, just as the frequencies are for the nominal
modal parameters. For transient analysis, the nominal response for each time step is output,
followed by the sensitivities for that time step. Then the nominal results for the next time
step are output, and so on. See Figure 49 for an example of eigen sensitivity.

The change of parameter (or tolerance) may be specified in any of three ways.

1. Specify an absolute tolerance by entering “+/-” followed by the number, e.g. “+/-
1.05e-4”.

2. Specify a relative tolerance by entering “+/-” followed by a number and the keyword
“percent”. Each field should be separated by a space. For example,
56 +/- 2.0 percent

3. Use the default tolerance by entering only the “+/-” by itself. The default tolerance
is 2 percent.

The selection of parameters is controlled by the inclusion of a +/- symbol following a
parameter in the input deck. Examples of valid sensitivity parameter definitions are:

MATERIAL 1
E 10e6 +/- 1e6 // absolute tolerance specified
density 2.59e-4 +/- // no tolerance, use default

END

BLOCK 1
area 0.10 +/- 5 percent // relative tolerance specified

END

BLOCK 2
thickness +/- 1 percent // relative to \exodus attr

END

UNCLASSIFIED - UNLIMITED RELEASE 239

GROPE> select step 4
Time = 3.504E+3 (time step 4 of 30)

GROPE> gvar
Time = 3.504E+3 (time step 4 of 30)
Global Time Step Variables
ModeNumber = 4.0000E+00
EigenFrequency = 3.5042E+03
EigenVectScale = 1.0000E+00
dL/dElement Block 1000 area = 3.9362E+03
dL/dElement Block 101 thickness = 1.4426E+07

The order of parameters can be determined from the global variables. It is also
available in the results file. The sensitivities may be extracted using the global
variables.

GROPE> times
Number of time steps = 18

Step 1) 725.3E+0
Step 2) 725.3E+0
Step 3) 3.005E+3
Step 4) 3.504E+3
Step 5) 3.504E+3
Step 6) 4.929E+3
Step 7) 602.1E+0
Step 8) 602.1E+0
Step 9) 6.512E+0
Step 10) 3.936E+3
...

The first NMODES (6 in this example) eigenvalues and vectors are associated
with the nominal structure. The next NMODES values are the dλ/dP1 values
associated with the first parameter, P1. The corresponding vectors are dφi/dP1.

Figure 49: Eigen Sensitivity Example Data. In this example, both eigen value and eigen
vector sensitivities are computed. The data is probed using “grope”. Global variable include
sensitivities to area in block 1000 and thickness in block 101.

240

LOADS
nodeset 1
force 0. 0. 1000 +/- 0 0 10 // tolerance for vector param

END

Note that the tolerances are specified on the parameters where they normally appear in the
input file. That is, these definitions do not appear in the SENSITIVITY section.

2.34.2.1 Solution Types: Sensitivity analysis is available only for the solution types
shown in Table 81. The primary application is in eigen analysis where the semi-analytic
solutions can provide significant computation and accuracy benefit over a finite difference
approach. See 36. Transient analysis sensitivity is only available using the old_transient
driver which solves for acceleration. The new, displacement based solver has been shown to
have significantly better stability.

Table 81: Sensitivity Analysis Solution Type Availability

Name Section Description
eigen 2.1.10 Normal Modes
statics 2.1.28 Linear Statics

old_transient 2.1.32 Acceleration based linear transient

2.34.3 Sensitivity Limitations

As noted in the theory manual (sec 1.14), sensitivity analysis may be performed using
most solvers. With the sparsepak solver, sensitivity analysis may not be performed on models
with multipoint constraints.

2.35 Element Level Interface for UQ

For interaction with external optimization packages and with external uncertainty quan-
tification (UQ) applications, it is sometimes necessary to modify design parameters on an
element basis. In this mode, the structural analysis is best considered as a “black box” in-
teraction, i.e. the UQ application knows nothing about the interior structure of the analysis.
This type of analysis does not typically use the “SENSITIVITY” keyword (section 2.34),
even though the UQ application may compute sensitivities.

Material properties (for linear elastic material) can be modified on an element by element
basis as shown in the example of Figure 50. In this case, element variables representing the

UNCLASSIFIED - UNLIMITED RELEASE 241

Material example
Isotropic
E from file as "youngsmodulus"
nu from file as "nu"
rho 0.283

END

Figure 50: UQ Element Interface. This example would read Young’s modulus and Poisson
ratio from the exodus file for each element in each block using this material.

material properties are entered into an Exodus database, and are read and applied within
Sierra/SD .

The keywords “from file” must be included as part of the input, or data in the Exodus
file will be ignored. It is recommended that the data be entered into the Exodus database
with a label. The keyword, “as” is used to associated the data in the Exodus database with
the desired variable.

242

2.36 DAMPING

This section allows input of simple global viscous damping models, using either modal damp-
ing rates or stiffness and mass proportional damping. The various options for the DAMPING
section are shown in Table 82.

Table 82: DAMPING Section Options

Parameter Description
alpha mass proportional damping parameter (real)
beta stiffness proportional damping parameter (real)
gamma uniform modal damping rate (fraction of critical) (real)
mode individual modal damping ratio (fraction of critical)

(integer, real)
ratiofun index of function to define modal damping ratios
FilterRbm remove rigid body mode contribution to damping
maxRatioFlexibleRbm controls check for 6 RBM with FilterRbm

The damping matrix or modal damping coefficient is determined by summing contributions
from all damping parameters given in Table 82. For modal superposition-based transient
analysis,modaltransient, all the given parameters are defined. For linear direct implicit
transient analysis, the modal damping parameters apply only to modes for which eigenvalues
and eigenvectors have previously been computed. This depends on the presence of the
keyword nmodes in the solution section of the input file. In the case of amodalranvib
(or modalfrf analysis in the case of complex modes), modal damping is available, but the
proportional damping parameters alpha and beta are currently ignored. We hope to lift
this restriction in the future.

The effect of the mass and stiffness proportional parameters on modal damping depends on
the frequencies of the modes. For modal-based analysis, the damping rate for mode i with
radial frequency ωi is given as

ζi = α/(2ωi) + β · ωi/2 + Γ + mode[i] + ratiofun(i)

where the viscous damping term in the modal equilibrium equation is 2ζiωi. For example
the following damping input section could be used in a modal transient analysis 2.

DAMPING
alpha 0.001 //
beta 0.00005 // C = .001 * M + .00005 * K
gamma 0.005 // 0.5 % critical
mode 1 0.01 // 1 % of critical
2Block specific proportional damping is also available. See section 2.24.2.

UNCLASSIFIED - UNLIMITED RELEASE 243

mode 2 0.005 // 0.5 % critical
mode 3 0.015 // 1.5 % critical

END

It produces the following damping ratios.

Mode modal damping ratio modal viscous damping term
1 0.015 + 0.001/(2ω1) + 0.00005ω1/2 0.030ω1 + 0.001 + 0.00005ω2

1
2 0.010 + 0.001/(2ω2) + 0.00005ω2/2 0.020ω2 + 0.001 + 0.00005ω2

2
3 0.020 + 0.001/(2ω3) + 0.00005ω3/2 0.040ω3 + 0.001 + 0.00005ω2

3

In direct transient analysis3, the full mass and stiffness matrices are integrated for the solu-
tion. Specification of a modal damping method triggers construction of a damping contribu-
tion from the previous modal solution (using a method described in 37). This contribution
is combined with other damping terms such as the proportional damping. Thus, the same
damping input section would produce the damping ratios shown above for the first three
modes. Modal damping is applied to modes computed in a previous solution case.4

The ratiofun keyword permits definition of modal damping terms based on a frequency
dependent function. The associated function definition (see section 2.28) provides a table
look up for damping ratios. For example, consider a system with modes at 200 and 500 Hz.
The following example will establish modal damping ratios of .03 and .06 respectively. The
function describes a line defined by ratio(f) = 0.01 + 0.1/1000f .

DAMPING
ratiofun=100

END

FUNCTION 100
type=linear
data 0 0.01
data 1000 0.11

END

The FilterRbm keyword permits proportional damping without damping the rigid body
response. Thus, mass proportional damping can be used with no impact on the rigid body
response. The theory behind this method of damping is described in § 1.17 of the Theory
Manual. In order for this method of damping to work properly, the structure must have

3i.e. non-modal based, but linear transient
4If no previous solution case has been specified, then a default eigen analysis will be performed.

244

the conventional six rigid body modes of three translations and three rotations. A check of
this condition is made inside of Sierra/SD , and a fatal error results if this condition is not
satisfied. Specifically, the condition is met if

‖KΦr‖2

‖Kd‖∞‖Φr‖2
≤ ε (62)

where K is the stiffness matrix, Φr is the matrix of six rigid body modes, and ‖Kd‖∞ is
the largest entry on the diagonal of K. The scalar tolerance ε can be specified using the
maxRatioFlexibleRbm keyword.

DAMPING
alpha=0.1
FilterRbm

maxRatioFlexibleRbm=0.001 // default is 1e-10
END

2.36.1 Nonlinear transient solutions with damping

Using the stiffness proportional damping parameter beta in a nltransient analysis will
generate damping terms using the initial (or linear) stiffness matrix. The tangent stiffness
matrix may not be used. Otherwise, the tangent matrix would be required to compute the
damping terms at each iteration.

Nonlinear solutions do not support standard modal damping.

While nonlinear solutions do NOT currently support standard modal damping, they may be
damping using the Distributed Damping method of the next section (2.36.2). Like modal
damping, this is a system level damping model.

2.36.2 Nonlinear Distributed Damping using Modal Masing Formulation

The purpose of this formulation is to implement a subsystem or system level nonlinear
distributed damping model into Sierra/SD . The theory on this method is found in the
Sierra/SD Theory Manual.28 Distributed damping is a method developed to model the
nonlinear damping response of a subsystem. It implements the damping in a nonlinear
manner with the use of an internal force term. The damping is modeled by either an Iwan
model or a linear damper, and distributed to the subsystem by a modal expansion. This
method augments the internal force vector through a modal Masing formulation.2

2 Masing and Iwan models are used almost interchangeably in this document. Iwan models are a subset
of more general Masing models.

UNCLASSIFIED - UNLIMITED RELEASE 245

Previous to the nonlinear transient solution which computes the distributed damping,
eigenvectors must be computed. This is done in a previous solution ’case’ option using
either standard “eigen” methods or using “blk_eigen”. The blk_eigen method is used to
do an eigenvalue analysis on the subsystem blocks. This defines the subsystem by specifying
the blocks in the blk_eigen, which is further explained in section 2.1.13.

The damping section is used to define the type of damping behavior. Currently, only two
types of damping behavior are defined: a linear damper, damper, and an iwan model,
iwan, see the theory manual.28 Each mode will have a keyword defined after it with an
associated parameter number. The parameters are used to define the damping behavior. If
nothing is specified for a mode, then no damping for that mode is defined. An example input
is shown below.

SOLUTION
case ’blockeig’

blk_eigen
block 1:3, 5, 20

shift -1e6
nmodes 10

block 4, 6:19
shift -1e5
nmodes 6

case ’nonlinear’
nltransient

nsteps = 200
time_step = 5.0e-3
rho = 0.8

END

DAMPING
mode 1 damper 1
mode 2 damper 2
mode 3 damper 2
mode 4 damper 2
mode 5 damper 2
mode 6 damper 2
mode 7 iwan 4
mode 8 iwan 4
mode 9 iwan 4
mode 10 iwan 3
mode 11 iwan 3
mode 12 iwan 3
mode 13 iwan 3
mode 14 iwan 3

246

mode 15 iwan 3
mode 16 iwan 3

END

PROPERTY 1
Mu = 0.001
K = 0

END

PROPERTY 2
Mu = 0.02
K = 0

END

PROPERTY 3
chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

END

PROPERTY 4
chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

END

UNCLASSIFIED - UNLIMITED RELEASE 247

3 Element Library

Short descriptions of each of the types of elements follow. Most of the parameters for
the element are supplied either in the database file (i.e. Exodus file) or in the text input
file (*.inp). If parameters exist in both locations, the values specified in the text input will
over ride the Exodus database specification.

3.1 Hex8

TheHex8 is a standard 8 node hexahedral element with three degrees of freedom per node.
The Hex8 element has 8 integration points. The shape functions are trilinear. It supports
isotropic and anisotropic materials.

There are three variations of Hex8. The default element is a bubble hex element, which
can be specified by Hex8b, or by no specification at all. The bubble element still has 8
nodes and 3 degrees of freedom per node, and thus from a user’s perspective it is no different
than the standard Hex8. The Hex8b element uses bubble functions,38,3940 to augment
the standard element shape functions. It gives much better performance in bending than
does the standard hex8.

The Hex8u specifies an under integrated Hex with properties similar to those of most
commercial finite element codes. There are two versions of this element. The first is a stan-
dard underintegrated element, and the second is a mean quadrature element with selective
deviatoric control. In both cases, the under integration produces an element that is soft
relative to a fully integrated element. Both elements are specified using by the keyword
Hex8u, along with the parameter sd_factor. If sd_factor is specified, then the
mean quadrature element with selective deviatoric is invoked with the value of sd_factor
specified. If the parameter sd_factor is not specified, the standard underintegrated ele-
ment is invoked. For example, to use the underintegrated element, one could specify

BLOCK
hex8u
material 1

END

On the other hand, the following block would use the mean quadrature element with a
selective deviatoric parameter of 0.9

BLOCK
hex8u
material 1
sd_factor 0.9

248

END

Note that sd_factor must be between 0 and 1. With a value of 0, the element is simply a
mean quadrature element. With a value of 1, the element is again mean quadrature, but with
fully integrated deviatoric component. More details on the theory behind these elements is
given in the theory manual.

The fully integrated Hex is specified by Hex8F. While it performs adequately when the
element shape is nearly cubic, it performs quite poorly for larger aspect ratios. For most
problems involving bending the Hex8u is recommended.

The only required parameter for these elements is the material specification. Any material
may be applied.

3.2 Hex20

The 20 node variety of Hex element provides quadratic shape functions. It is a far better
element than the Hex8, and should be used if possible. The Hex20 element in Sierra/SD
is very similar to elements found in most commercial codes. A material specification is
required, and any structural material may be used.

Shape Function and Gauss point locations for the Hex20 are described in table 39, and
in the theory manual (section 3.6.1).

The stress may be output at the Gauss points as described in section 2.8.12.

3.3 Wedge6

The Wedge6 is a compatibility element for theHex8, it is not recommended that the entire
mesh be built of Wedge6 elements. They are primarily intended for applications where
triangles are naturally generated in mesh generation. A material specification is required,
and any structural material may be used.

3.4 Wedge15

The Wedge15 element adds mid-side nodes to the Wedge6. Like the Hex20 and Tet10, it has
quadratic shape functions, and is a very good element. A material specification is required,
and any structural material may be used.

UNCLASSIFIED - UNLIMITED RELEASE 249

3.5 Tet4

This is a standard 4 node tetrahedral element with three degrees of freedom per node. The
Tet4 element has one integration point. The shape functions are linear. It is not recom-
mended to use only Tet4 elements for the entire mesh because standard, linear tetrahedron
are typically much too stiff for structural applications. The Tet4 is provided primarily for
those applications where a mesh may be partially filled with these elements. If a model is
constructed of all tetrahedral elements (as by an automatic mesh generator), the Tet10 is
strongly recommended over the Tet4.

A material specification is required, and any structural material may be used.

3.6 Tet10

This is a standard 10 node tetrahedral element with three degrees of freedom per node. The
Tet10 uses 4-point integration for the stiffness matrix and 16-point integration for the
mass matrix. The shape functions are quadratic. This is a very good element for use in most
structural analyses.

A material specification is required, and any structural material may be used.

3.7 QuadT

The QuadT is a 4-node quadrilateral shell with membrane and bending stiffness. The
element properties and element stiffness and mass matrices are developed by internally gen-
erated triangle elements, as illustrated in Figure 51. The quadrilateral is split along the
shortest diagonal. It is not an optimal element, but is adequate for most applications. A
more optimal element is currently under development. See the description of the Tria3
and TriaShell for details on the element.

The QuadT may be based on either theTria3, or on theTriaShell element depend-
ing on the material properties. The Tria3 is used for isotropic, single layer elements. It is
faster, and more robust than the TriaShell. However, more complex materials require use
of the TriaShell. The underlying formulation is determined automatically by Sierra/SD ,
and cannot be selected by the user.

A material specification is required. Any linear elastic material may be used, including
layered materials defined for the TriaShell.

250

Figure 51: QuadT Element

The element is generated by internally combining two Triangle elements.

v v

v v

Triangle #1

Triangle #2

�
�
�
�
�
�
�
�
�
�
�
�
�
��

3.8 QuadM

The QuadM is a 4-node quadrilateral membrane element. This element is similar to
the QuadT element, except that it has no bending stiffness, and also in that it has no
rotational degrees of freedom. It is not constructed from underlying triangles. Although it
might seem that this element’s behavior could be reproduced by using the QuadT and
setting bending_factor to zero, it is not the case, since in that case the QuadT
element would still retain the rotational degrees of freedom. For shell problems with very
small bending stiffness, this element may be ideal, since it would not suffer from near-
singularity.

The QuadM is a 4-noded element, where each node has three displacement degrees of
freedom. For two-dimensional problems, it reduces to the standard plane elasticity element.
For three-dimensional problems, it behaves like the plane elasticity element in the plane,
and like a stretched balloon out-of-plane. This latter behavior results from an additional
stiffness term that is applied to the out-of-plane degrees of freedom, which resembles the
stiffness associated with Laplace’s equation. This additional stiffness is derived in classical
textbooks.15 Note that this additional stiffness comes from the preload. Hence, if no preload
is applied, the out-of-plane stiffness is zero and the element is singular.

The QuadM has a single required attribute, thickness. The remaining attributes3

are listed in Tables 83 and 84.

Both full and selective integration methods are available for the membrane. The full
integration is the default. Selective deviatoric integration can be specified by using the
parameter sd_factor. For example, full integrated membrane, one would specify

3 Recall that many attributes may be specified in the Exodus file, but may also be represented in the
text input file.

UNCLASSIFIED - UNLIMITED RELEASE 251

Attribute Keyword Description
1 thickness Thickness of the shell
2 sd_factor selective deviatoric parameter used for numerical integration

Table 83: QuadM attributes

BLOCK
QuadM
material 1
thickness 0.1

END

On the other hand, the following block would use the mean quadrature element with a
selective deviatoric parameter of 0.9

BLOCK
QuadM
material 1
sd_factor 0.9
thickness 0.1

END

Note that sd_factor must be between 0 and 1. With a value of 0, the element is simply a
mean quadrature element. With a value of 1, the element is again mean quadrature, but with
fully integrated deviatoric component. More details on the theory behind these elements is
given in the theory manual.

This element could be used in any situation where a preload is applied to the elements
before the analysis of interest (i.e. a static preload followed by eigenanalysis), or even in
cases where no preload is applied but the membranes are sufficiently constrained (i.e. two
flat plates of hex elements with a layer of membrane elements in between).

This element can be used by simply specifying QuadM in the appropriate Block
sections. The material input syntax for this element is the same as for theQuadT element.
Also, this element can handle orthotropic material properties.

Sierra/SD example input files that use this element can be found in

Salinas_rtest/patchtests/quadt/quadt-patch8_test
Salinas_rtest/patchtests/quadt/quadt-patch9_test

This element is also commonly used in coupled simulations. In these cases, Adagio performs
the preload calculation, and the preload information is passed to Sierra/SD for later analy-
sis. In these cases the element is nonsingular due to the preload calculation. Examples that

252

Figure 52: Quad8T Element

The element is generated by internally combining six triangle elements.

v v

v v

f

f f

f

�
�
�
�
�
�
��

@
@
@

@
@

@
@@

�
�
�

�
�
�

��

@
@
@
@
@
@
@@

use Adagio coupled with Sierra/SD and the QuadM element can be found in the sierra
home area, under the following directories. These tests can be checked out by creating a
tempo project under sierra.

tempo_rtest/tempo/membrane_free_free
tempo_rtest/tempo/membrane_free_free_par
tempo_rtest/tempo/membrane_clamped
tempo_rtest/tempo/membrane_clamped_par

3.9 Quad8T

The Quad8T is an 8-node quadrilateral shell with membrane and bending stiffness. The
element properties and element stiffness and mass matrices are developed by internally gen-
erated triangle elements (see Figure 52. It is not an optimal element, but is adequate for most
applications. Shape functions are NOT quadratic. It is compatible with theTria6 element,
as well as with other elements based on the Tria3 or TriaShell. See the description of
these triangle elements for details of the underlying formulation.

The Quad8T may be based on either the Tria3, or on the TriaShell element de-
pending on the material properties. The Tria3 is used for isotropic, single layer elements. It
is faster, and more robust than the TriaShell. However, more complex materials require use
of the TriaShell. The underlying formulation is determined automatically by Sierra/SD ,
and cannot be selected by the user.

A material specification is required. Any linear elastic material may be used, including
layered anisotropic materials defined for the TriaShell.

UNCLASSIFIED - UNLIMITED RELEASE 253

3.10 Nquad/Ntria

TheNquad andNtria elements are isoparametric shells with membrane and bending
stiffness. They are shear-deformable elements with six degrees of freedom (DOF) per node
which support the isotropic as well as the orthotropic layered cases. The formulation of
the Nquad/Ntria is generated by decoupling the membrane and bending DOF. These
elements, currently, only have linear behavior implemented. If using a non-linear solution
method, these elements will not calculate a true internal force, but a linear force.

TheNquad/Ntria isotropic stiffness matrix is based on the plane elasticity and shear
deformable (Mindlin) formulations as outlined in Reddy.41 The layered shell stiffness matrix
is based on the composite laminate formulation found in Ochoa and Reddy.42

The use of Nquad/Ntria elements requires a BLOCK definition with the Nquad
orNtria keyword, respectively. The BLOCK definition must also have a material keyword
referencing the isotropic material properties (section 2.26) or orthotropic layer properties
(section 2.26.3) with properties E1, E2, ν12, and G12). An example element block for a single
layer isotropic material is shown below:

Block 2
Nquad
thickness 0.1
material 2

end
Block 3

Ntria
thickness 0.4
material 4

End

Thickness for single layer materials can be specified as attributes in the Exodus file or
directly in the Nquad/Ntria section of the input file. If specified in the input file, these
override the Exodus attribute specifications.

The stabilization method from Belytschko43 is used for the Nquad element. Using
single point integration K [1x1]

s for the shear stiffness matrix leads to hourglass modes for
some problems. Using full integration K [2x2]

s can cause shear locking in some problems.
Belytschko recommends a shear stiffness matrix given as Ks = (1 − ε)K [1x1]

s + εK [2x2]
s , a

linear combination of the reduced integration and full integration shear stiffness matrices.
The fraction, ε = rt2/A is a function of thickness and area. Here r = 0.03, t is the element
thickness and A the area of the shell. This automatic selection of ε works well for very thin
plates, but can be a problem for thicker elements; clearly, ε should never exceed 1. To limit
shear locking, the fraction may be capped using nquad_eps_max, as shown in the
example below.

254

Block 1
nquad
thickness 1
nquad_eps_max 0.1

End

The value for ε is adjusted using the function ε̂ = εmax
4√1+ε4 . This is done to address problems

with ’elbow functions’ in the code. Figure 53 shows this function for nquad_eps_max = 1.

Figure 53: Function for nquad_eps_max

3.11 TriaShell

The TriaShell element has 3 nodes with 6 degrees of freedom (DOF) per node. The for-
mulation of theTriaShell is generated by decoupling the membrane DOF and the bending
DOF. Allman’s Triangular (AT) element44 models the membrane DOF, while the Discrete
Kirchhoff Triangle45 (DKT) models the bending DOF. These two elements are combined
into the TriaShell element. The single layer shell supports only isotropic materials. A
specification for a linear elastic material property is required.

The TriaShell, like the Tria3, has a single required attribute, thickness. The
remaining attributes4 are listed in Table 84.

Generally, users should use the Tria3 element if possible because it is less prone to shear
locking behavior, and it is somewhat faster. However, the TriaShell element must be used
in these special cases.

• When the material is anything but isotropic.
4 Recall that many attributes may be specified in the Exodus file, but may also be represented in the

text input file. These rotational attributes are only available in the input file.

UNCLASSIFIED - UNLIMITED RELEASE 255

Attribute Keyword Description
1 thickness Thickness of the shell
2 offset offset for the shell

N/A rotate about axis
N/A rotate about normal
N/A membrane_factor scale factor for membrane
N/A bending_factor scale factor for bending

Table 84: TriaShell attributes

• If multiple material layers are required.

Additional attributes include two rotational parameters. The first is a rotation about a
given axis, and the second is a rotation about the surface normal. The angles are specified
in degrees and the axis is an integer 1, 2, or 3, representing the x, y, and z coordinate axes.
The example below illustrates the use of these parameters. Figure 54 illustrates the concept.

3.12 Layered Shell

You may also specify layers for the TriaShell and Nquad/Ntria elements. When
using layers, the available materials are isotropic, s_isotropic and orthotropic_layer. Each
layer must specify a material, a thickness, and a fiber orientation. Thickness for a multilayer
material must be specified layer by layer in the element section of the input file. The Exodus
attribute may not be used. The layer keyword defines a new layer for the current shell.
The layers of the shell will be stacked from the bottom to the top based on the order of
the layer keyword on the input deck. The layer_ID input is an identifier provided by the
user and is not used to select stacking order. A shell may have up to 250 different layers
defined. Figure 55 shows a simple schematic explaining how layers are stacked in Sierra/SD.
An example element block for a four layer orthotropic layered shell is shown below.5

An important parameter for the layered shells is the specification of a user-defined co-
ordinate system with the coordinate option. In the example shown here, a cylindrical
coordinate system is defined and the orthotropic material properties are defined using that
cylindrical coordinate system and the additional rotate options. In the case that no user-
defined coordinate system is defined, the default of the global cartesian system is used.

Block 2
TriaShell
coordinate 1

5 For layered shells the “thickness” parameter specifies the actual thickness of that layer of the shell. This
is in contrast to the HexShell which specifies a relative thickness. See section 3.16.

256

The coordinate frame is projected onto the surface of the shell.

z

y

x

A new coordinate frame is generated by rotating about the specified axis and projecting onto
the element surface.
Rotate 45o about axis 3

z

y

x

x’y’

x’’y’’

x’’ and y’’ are a projection of x’, y’ onto
the surface.

Finally, the axes may be rotated about the surface normal.
Rotate 15o about normal

x’’y’’
x’’’

y’’’

Figure 54: Shell Rotation Process

UNCLASSIFIED - UNLIMITED RELEASE 257

Figure 55: Stacking arrangement for a multilayer shell element.

rotate 40 about axis 1
rotate 15 about normal
layer <layer_ID>

material 1
thickness 0.02
fiber orientation 40

layer <layer_ID>
material 2
thickness 0.04
fiber orientation 44

layer <layer_ID>
material 3
thickness 0.03
fiber orientation 54

layer <layer_ID>
material 4
thickness 0.01
fiber orientation 4

End

Coordinate 1
cylindrical
0.0 1.0 1.0
2.0 1.0 1.0

258

0.0 1.0 10.0
END

Note that stress output for shells with more than one layer can be written
to an Exodus file or can be obtained from the result file by specifying
stress in the Echo section. The layer stresses will be computed only at
the midpoint of each layer. Thus, layer stresses at the top and bottom of
each layer are not currently supported.

3.13 Tria3

The Tria3 is a three dimensional triangular shell with membrane and bending stiffness.
There are 6 degrees of freedom per node. In most respects it is very similar to the Tri-
aShell. It is the default element for triangular meshes. The Tria3 was provided by
Carlos Felippa of UC Boulder. It currently supports only isotropic materials. It has a single
required attribute, thickness, which may be specified in either the Exodus file or the text
input file.

The element stiffness matrix for triangles consists of the sum of two independent contribu-
tions from membrane and bending. These contributions may be arbitrarily scaled using the
parameters membrane_factor and bending_factor. Each of these parameters
default to 1.0. They must be specified in the text input file in the block definition.

Attribute Keyword Description
1 thickness Thickness of the shell
2 offset offset for the shell

N/A membrane_factor scale factor for membrane
N/A bending_factor scale factor for bending

The thickness may either be entered in the Exodus file, or in the input file. If an attribute
is entered in both locations, the value in the input file will be honored. An example element
block is shown below.

Block 3
Tria3
Thickness 0.01
material 71
membrane_factor=0 // turns off membrane stiffness

End

A material for a linear elastic, isotropic material specification is required.

UNCLASSIFIED - UNLIMITED RELEASE 259

Figure 56: Tria6 Element

The element is generated by internally combining four Tria3 elements.

@
@
@
@
@
@
@
@
@
@
@
@
@
@@v v

v

f

f f

@
@
@

@
@

@
@@

3.14 Tria6

The Tria6 is a 6-node triangular shell with membrane and bending stiffness. The element
properties and element stiffness and mass matrices are developed by internally generated
Tria3 elements (see Figure 56. It is not an optimal element, but is adequate for most
applications. Shape functions are NOT quadratic. It is compatible with the Quad8T
element, as well as with other elements based on the Tria3. See the description of the
Tria3 for details on the attributes and properties required for the element.

3.15 Offset Shells

Any shell may be offset by specifying an offset. This single number is multiplied by the
element normal to arrive at an offset vector. The resulting mass and stiffness properties
are equivalent to the stiffness generated by translating the shell by the offset vector, and
constraining the resulting offset nodes to the untranslated nodes using rigid links. The
performance is vastly better than the constraint approach. Note that for curved surfaces
there may be modeling issues with offset elements since there is no change in curvature with
the change in radius. In the .inp file the element offset is specified as,

offset=-3.14e-2

Offsets may also be specified in the Exodus file. For shell elements these are specified in the
attributes 2. Note however, that at this time there are few tools to support model building.
Refer to section 3.44 for limitations of element offsets.

260

3.16 HexShell

The 8 noded hexshell is a hybrid solid/shell element. It is meshed as a standard hex element,
but the formulation of the element is similar to that of a shell. Unlike a shell element, the
thickness is determined by the mesh. But, the element is designed to operate with many of
the same features as shell elements even when it becomes very thin. Details of the element
formulation are available in a separate report (Ref. 46), which can be obtained from the
Sierra/SD website. An introduction to hexshells is readily available in,28 and the verification
manual18 discusses the results of the verification problems from46 for Sierra/SD.

The hexshell has a preferential thickness direction which is essential to it’s correct oper-
ation. The thickness direction may be specified in any one of three ways.

1. Using the tcoord, it may be specified by a coordinate frame.

2. An Exodus side set may be attached to one face of all the elements in a block using
the keyword sideset. The thickness direction will be defined to be the normal to the
sideset’s surface. For example, if the sideset is placed on a side of the structure that
lies on the x-y plane, then the thickness direction of the hexshell will be defined as the
z direction, since that is the normal to the x-y plane.

3. Sierra/SD may attempt to determine the thickness direction from the topology. This
is the default option (because it is the easiest for the user), but it is also the least
robust.

SierraSD attempts to identify the element orientation first using tcoord. The tcoord
keyword abbreviates thickness coordinate, and is only defined for hexshells. If tcoord is
not specified, then Sierra/SD attempts to identify the element orientation second from the
corresponding sideset. These methods do not depend on the decomposition, but the third
method does depend on the decomposition. Lastly if no sideset is specified, Sierra/SD
attempts to determine the thickness direction from the topology.

The element orientation may be identified in the output using the eorient keyword.
See section 2.8.25.

Thickness Determination by Topology

When the element thickness must be determined by the topology, the mesh must follow
these requirements. The elements in the block must form a sheet. More than one discon-
nected portion of the sheet is possible, but all portions must adhere to these requirements.

• Every element in the sheet must have at least two neighbors, e.g. the sheet can’t be a
single element. NOTE... at this time, this is true for the parallel decomposed mesh as

UNCLASSIFIED - UNLIMITED RELEASE 261

well. The portions of the sheets found in each subdomain can not be a single element.
We must be able to eliminate the thickness direction of each element by it’s neighbor
connectivity.

• The elements in the sheet may vary in thickness, but the sheet must be exactly one
element thick.

• The elements must be connected as a single sheet. Thus, if the sheet turns a corner,
it must do so gently. The algorithm will fail if any element in the sheet is connected
on the top or bottom to another element in the sheet.

Determining element thickness from the topology has known limitations, and is not
planned for an update. This topology method is the oldest and depends on the body being
laid out in a layer one element thick. Unfortunately, it is not well parallelized, as we do not
have ghost elements. The second and third methods do not depend on the decomposition.

HexShell Parameters

The HexShell requires a material specification. Optional parameters include the
sideset or the coordinate frame and coordinate direction used to determine the thickness
direction. The sideset keyword must be associated with a defined sideset in the model. The
tcoord keyword requires two integer arguments. The first is the ID of the coordinate
system referenced. The second is the direction (1, 2 or 3) associated with the coordinate
system.

Keyword Arguments Description
1 sideset ID sideset to specify thickness direction
2 tcoord ID and direction coordinate frame and coordinate direction
3 autolayer # of layers and material creates specified number of uniform layers

of specified material

An example specification for a multi-layer hexshell is shown in Figure 57.

HexShell Multilayers

The formulation of the HexShell supports multiple layers of orthotropic materials. Each
layer has an associated material, normalized thickness and coordinate. The coordinate is
provided to permit specification of the material coordinate. The thickness specifies the
relative thickness of each layer. The total thickness is determined from the element topology,
but relative thicknesses for each layer must be specified. If only one layer is specified, then
the layer keyword is not required, and the relative thickness is irrelevant (and not required).6

6 Layers for HexShells must specify the relative thickness of the layer. This is in contrast to layered shells
which specify the absolute thickness (section 3.12.

262

Block 88
HexShell
sideset 88
layer 1

material 1
coordinate 1
thickness .4

layer 2
material 2
coordinate 2
thickness 0.6

End

BLOCK 89
HEXSHELL
tcoord 5 1 // use coordinate frame 5, "x" direction
material 89

END

BLOCK 100
HexShell
sideset 1 // the normal to sideset 1 will be the thickness

// direction for block 100
material 1

END

Figure 57: Example HexShell Input. Block 88 is multilayer input with thickness direction
determined using a sideset. Block 89 defines the thickness direction using a coordinate frame
and the “tcoord” keyword.

UNCLASSIFIED - UNLIMITED RELEASE 263

There are two methods to specify multiple layers in a HexShell. The first, illustrated
in Figure 57, provides complete flexibility over the material specification, orientation and
thickness of each layer. An autolayer capability provides are much more limited speci-
fication that is useful for models of a single material with temperature dependence across
the thickness. This autolayer feature creates the specified number of layers, of uniform
thickness, of a single specified material. Figure 58 illustrates this specification.

Materials for all HexShell specifications can be defined as a function of temperature, with
the temperatures defined through the exodus file as element variables. The temperature can
vary over both the elements and layers in the block.

Block 1
HexShell
sideset 1
autolayers 4
material 1

End

Material 1
name "steel1"
E function=1
nu .3
density 0.288

END

FUNCTION 1
type Linear
data 0 30e6
data 1e6 20e6

END

Figure 58: HexShell Autolayer Example. Here, exodus element variables define the temper-
ature for each element on the block. Exodus layers must be of uniform thickness, and must
be labelled “layer_temp1”, “layer_temp2”, etc.

When using temperature dependent materials, the temperature is obtained from the
exodus file. The modulus is calculated as a function of temperature, and used in the element
stiffness formulation. The temperature can vary both between layers and between elements.
Any of the material parameters in either an isotropic or orthotropic material can be set
to be temperature dependent. In the case of an isotropic material, any pair of two of the
properties G, K, E, or ν can be temperature dependent.

The number of layers in the input file does not need to match the number of layers in
the exodus file. The temperatures in the exodus file will be interpolated piecewise linearly
to the center of the layer in the input file.

264

Temperature dependent orthotropic materials are supported for HexShells only. Tem-
perature dependent densities are also supported.

Feature Analytic Verification Tested Parallel User
Reference Section Test Test

general yes 4.5 Y Y some
multiple layers no† 4.5 Y

†Felippa’s report contains some verification. It has not been carried into Sierra/SD .

Table 85: HexShell Verification Summary

The mass properties of a layered HexShell are computed approximately
as follows.

1. The volume fraction, fi, and density, ρi, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes
as if an element of density ρ̄ = ∑

i ρifi filled the entire element.

The net affect of this is that the mass is computed as if an average density
were applied. This could introduce minor errors if the element is thick
and is much denser on one side than another.

For a hexshell if using tcoord, it is important to remember that the material definition
may also use a non-default coordinate frame. In the next example, the thickness coordinate,
tcoord, and the material defintion use the same coordinate system.

COORDINATE 1000
cylindrical
0.0 0.0 0.0
1.0 0.0 0.0
0.0 1.0 0.0

END
block 13

hexshell
tcoord 1000 1
material 8
coordinate 1000

end

3.17 Beam2

The Beam2 element is based on Cook’s (Ref. 22) formulation. This element is similar
to the standard Nastran CBAR element, but it does not include a definition for a product

UNCLASSIFIED - UNLIMITED RELEASE 265

of inertia or area shear factors. A product of inertia and area shear factors are included
in the CBAR element in Nastran and are supported by the Nbeam element described in
section 3.18.

The use of a Beam2 element requires a BLOCK definition with a Beam2 keyword. The
BLOCK definition must also have a material keyword referencing an isotropic material. Finally,
the Beam2 element must have a defined set of geometric parameters. Parameters for the
Beam2 element may be entered either as attributes in the mesh file or through keywords
in the BLOCK definition. The general form of the BLOCK definition is as follows:

BLOCK block_id
Beam2
material = material_id
Area = area
I1 = inertia_about_1
I2 = inertia_about_2
J = polar_moment_inertia
orientation = x_orient y_orient z_orient
offset = x_offset y_offset z_offset

END

We will discuss the various keywords in the above BLOCK definition in following sections.

Before describing the parameters for the Beam2 element, it is necessary to define the
local coordinate system that is set up for beam elements in general. The local coordinate
system is defined by three axes – xelem, yelem, and zelem. The xelem-axis lies along the
length of the beam. The other two axes, the yelem-axis and zelem-axis, are determined by
an orientation vector, V. The local coordinate system and the orientation vector are shown
in Figure 59. The orientation vector V lies in the plane defined by the xelem-axis and the
yelem-axis – plane 1 in Figure 59. The zelem-axis is derived from the orientation vector V
and the xelem-axis by taking the cross-product xelem ×V. Once the zelem-axis is calculated,
the cross-product zelem × xelem gives the yelem-axis.

The xelem-axis and zelem-axis define plane 2 in Figure 59. The yelem-axis, which lies in
the 1-plane, corresponds to a local 1-axis defined in a cross-sectional plane, a plane normal
to the xelem-axis. The zelem-axis, which lies in the 2-plane, corresponds to a local 2-axis
defined in the cross-sectional plane.

The Beam2 element requires that a number of geometric parameters be defined. A
cross-sectional area, area, must be defined. The cross-sectional area can be defined with an
AREA keyword. Two bending moments of inertia are also required. A bending moment of
inertia for the 1-plane (bending about the zelem-axis) is defined by the I1 keyword. Bending
moments in the 2-plane (or bending about the yelem-axis) is defined using the I2 keyword.7

7 Note that the I1 and I2 are the bending moments in their corresponding planes, and NOT bending
about their axes. This convention is consistent with many commercial codes including nastran.

266

Figure 59: Beam Orientation and Local Coordinate System.

A polar moment of inertia, polar_momnt_inertia, for torsion about the xelem-axis is required.
The polar moment of inertia can be defined with the J keyword.

The specification of the orientation vector V is optional if the cross-section of the beam
is completely symmetric. Otherwise, the orientation vector must be specified to assure that
the bending properties of the beam have the correct global orientation relative to the rest
of the structure. The components of the orientation vector can be specified with the values
x_orient, y_orient, and z_orient using an ORIENT key word.

By default, at the end of a beam, the point where the two bending axes cross (the origin
of the 1,2 coordinate system at the end of the beam) coincides with the grid point at the end
of the beam. We can shift the geometric location of the point where the two bending axes
cross away from the grid point by specifying a an offset vector Voff . This offset vector is
shown in Figure 60. For theBeam2 element, the same offset vector is applied to both ends
of the beam. The OFFSET keyword is optional. The offset vectors move the beam neutral axis
(the xelem-axis) off the line that passes between the two grid points defining the connectivity
of the beam. An offset is defined by a vector with values x_offset, y_offset, and z_offset.
These values are associated with an OFFSET keyword.

When the offset option is used, the offset stiffness properties are equivalent to the stiffness
generated by translating the beam by the offset direction and constraining the resulting offset
nodes back to the untranslated nodes using rigid links. In addition, the offset mass properties
are equivalent to the mass generated by translating the beam by the offset direction and
constraining the resulting offset nodes back to the untranslated nodes using rigid links. For

UNCLASSIFIED - UNLIMITED RELEASE 267

Figure 60: Beam Offset and Local Coordinate System.

the Beam2 element, only the component of the offset vector orthogonal to the element is
used to compute the offset behavior for both the stiffness and mass.

Note that for curved surfaces there may be modeling issues with offset elements, since
there is no change in curvature with the change in radius. Refer to section 3.44 for limitations
of element offsets.

The parameters just described, area, inertia_about_1, inertia_about_2,
polar_momnt_inertia, x_orient, y_orient, z_orient, x_offset, y_offset, and z_offset,
can also be defined as attributes in the mesh file. Attributes in the mesh file must be in the
order specified in Table 86. If an attribute is entered in both the mesh file and the input file,
the value in the input file will supersede the value in the mesh file. Two attribute orderings
are currently supported in Sierra/SD because of inconsistencies in pre-processing tools.
See the discussion on “OldBeam” in section 2.3.

The Beam2 element is restricted to isotropic materials. No stress or strain output is
available for the Beam2 element.

The following section illustrates the use of the Beam2 keyword in an element block defini-
tion. The element block has an integer block identifier of 3. This element block must consist
of two node elements.

BLOCK 3
Beam2

268

Table 86: Attributes for Beam2

old order # Keyword Description
1 1 Area Area of beam
2 5 I1 First bending moment
3 6 I2 Second bending moment
4 7 J Torsion moment

5,6,7 2,3,4 Orientation orientation vector
8,9,10 8,9,10 offset beam offset vector

Material 7
Area 0.71
I1 .05
I2 5e-2
J 0.994
Orientation 1.0 -1.0 0.9
Offset -3.14e-2 0.11 0.99

END

3.18 Nbeam

TheNbeam element was developed from COSMIC/Nastran’s open source CBAR element.
Unlike the Beam2 element discussed in the previous section, the Nbeam element in-
cludes a definition for a product of inertia and definitions for area shear factors. The Nbeam
element, currently, only has linear behavior implemented. If using a non-linear solution
method, the Nbeam element will not calculate a true internal force, but a linear force.

The use of a Nbeam element requires a BLOCK definition with a Nbeam keyword. The
BLOCK definition must also have a material keyword referencing an isotropic material. Finally,
the Nbeam element must have a defined set of geometric parameters. Most parameters
for the Nbeam element may be entered either as attributes in the mesh file or through
keywords in the BLOCK definition. Some parameters can be reset from default values only
by use of the keyword definitions in the BLOCK definition. The general form of the BLOCK
definition is as follows:

BLOCK block_id
Nbeam
material = material_id
Area = area
I1 = inertia_about_1

UNCLASSIFIED - UNLIMITED RELEASE 269

I2 = inertia_about_2
J = polar_momnt_inertia
I12 = product_inertia_12
Shear_factor_1 = sfactor1
Shear_factor_2 = sfactor2
orientation = x_orient y_orient z_orient
offset = x_offset y_offset z_offset

END

The various keywords in the above BLOCK definition are described in following paragraphs.

Local Coordinate Frame: Before describing the parameters for the Nbeam element,
it is necessary to define the local coordinate system that is set up for beam elements
in general. The local coordinate system is defined by three axes – xelem, yelem, and
zelem. The xelem-axis lies along the length of the offset beam. The other two axes,
the yelem-axis and zelem-axis, are determined by an orientation vector, V. The local
coordinate system and the orientation vector are shown in Figure 61. The orientation
vector V lies in the plane defined by the xelem-axis and the yelem-axis – plane 1 in
Figure 59. The zelem-axis is derived from the orientation vector V and the xelem-axis
by taking the cross-product xelem × V. Once the zelem-axis is calculated, the cross-
product zelem × xelem gives the yelem-axis. As the NBEAM supports arbitrary vector
offsets at each end, the orientation of the offset beam may differ from the orientation
of the unoffset geometry (see “offset” below).

The xelem-axis and zelem-axis define plane 2 in Figure 59. The yelem-axis, which lies
in the 1-plane, corresponds to a local 1-axis defined in a cross-sectional plane, a plane
normal to the xelem-axis. The zelem-axis, which lies in the 2-plane, corresponds to a
local 2-axis defined in the cross-sectional plane.

Area: The cross-sectional area, area, must be defined either as exodus attributes or in the
“block” section. The cross-sectional area can defined with an AREA keyword.

Bending Moments: The bending moments of inertia about orientation axes must be de-
fined either in the exodus file, or the “block” section. A bending moment of iner-
tia about the 1-axis (the local cross-sectional axis corresponding to the yelem-axis),
inertia_about_1, can be defined with the I1 keyword. A bending moment of iner-
tia about the 2-axis (the local cross-sectional axis corresponding to the zelem-axis),
inertia_about_2, can be defined with the I2 keyword. Finally, a polar moment of
inertia, polar_momnt_inertia, for torsion about the xelem-axis is required. The polar
moment of inertia can be defined with the J keyword.

The Nbeam element supports a product of inertia specification. The product of
inertia about the 1,2-axes, product_inertia_12, is specified with the keyword I12. If
the I12 keyword does not appear, the value for product_inertia_12 defaults to zero.

270

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Plane 1

Plane 2

y

V
X

Z

elem

elem

el
em

of
fs

et
 b

ea
m

Offset 2

Offset 1 1

2

Figure 61: NBeam Orientation, Offset and Local Coordinate System. The coordinate system
is in the plane of the offset beam. The plane is defined by the offset beam and the orientation
vector, ~V .

Shear Factor: The Nbeam element also has two area shear factor specifications. An
area shear factor is a constant by which an average shearing strain on a beam cross-
section must be multiplied in order to obtain the same transverse shear displacement
as the transverse shear displacement that will be obtained from the actual shear strain
distribution for the cross-section. Typically, the shearing strain will vary over a cross-
section rather than being uniform distribution. See Oden (Ref. 47) for a discussion of
shear factors. An area shear factor for shear in the 1-direction, sfactor1, is specified
with a Shear_factor_1 keyword. If no Shear_factor_1 keyword appears, the value for
sfactor1 defaults to 1.0. An area shear factor for shear in the 2-direction, sfactor2,
is specified with a Shear_factor_2 keyword. If no Shear_factor_2 keyword appears,
the value for sfactor2 defaults to 1.0.

Orientation: The orientation vector V must be specified to assure that the bending proper-
ties of the beam have the correct global orientation relative to the rest of the structure.
The components of the orientation vector can be specified with the values x_orient,
y_orient, and z_orient using an Orientation keyword.

Offset: By default, at the end of a beam, the point where the two bending axes cross (the
origin of the 1,2 coordinate system at the end of the beam) coincides with the grid
point at the end of the beam. We can shift the geometric location of the point where
the two bending axes cross away from the grid point by specifying a an offset vector
Voff . This offset vector is shown in Figure 60. For the Nbeam element, the same
offset vector is applied to both ends of the beam. The OFFSET keyword is optional.
The offset vectors move the beam neutral axis (the xelem-axis) off the line that passes

UNCLASSIFIED - UNLIMITED RELEASE 271

Table 87: Attributes and Parameters for Nbeam

Keyword Description
1 Area Area of beam
2 I1 First bending moment
3 I2 Second bending moment
4 J Torsion moment

5,6,7 Orientation orientation vector
8,9,10 offset beam offset vector
11,12,13 – offset of second node

– I12 product of inertia
– Shear_factor_1 shear factor 1-direction
– Shear_factor_2 shear factor 2-direction

between the two grid points defining the connectivity of the beam. An offset is defined
by a vector with values x_offset, y_offset, and z_offset. These values are associated
with an OFFSET keyword.
When the offset option is used, the offset stiffness properties are equivalent to the
stiffness generated by translating the beam by the offset direction and constraining
the resulting offset nodes back to the untranslated nodes using rigid links. For the
Nbeam element, the full offset vector is used to compute the offset behavior, and
different offsets may be applied at each end. (This behavior is different from the
Beam2 element, in which only the component of the offset vector orthogonal to the
element is used to compute the offset behavior).
Note that for curved surfaces there may be modeling issues with offset elements, since
there is no change in curvature with the change in radius. Refer to section 3.44 for
limitations of element offsets.

Many of the parameters just described can also be defined as attributes in the mesh file.
Attributes in the mesh file must be in the order specified in Table 87. If an attribute is
entered in both the mesh file and the input file, the value in the input file will supersede the
value in the mesh file.

The Nbeam element is restricted to isotropic materials. No stress or strain output is
available for Nbeam elements.

The following section illustrates the use of the Nbeam keyword in an element block defini-
tion. The element block has an integer block identifier of 3. This element block must consist
of two node elements.

BLOCK 3
Nbeam

272

Material 7
Area 1.92
I1 2.57375
I2 4.81277
J 0.025816
I12 -1.45983
Shear_factor_1 0.44021
Shear_factor_2 0.33313
Orientation 1.0 0.0 0.0
Offset 0.5 0.5 0.5

END

3.19 OBeam

These beams are provided by Carlos Felippa of UC Boulder. They are similar to the simple
beams ofBeam2. They use identical parameters. Because of this duplication, these beams
will probably be eliminated in the future.

3.20 Truss

This is the definition for aTruss element based on Cook (Ref. 22). Trusses have stiffness in
extension only. The Truss has 1 attribute as shown in the table. A linear elastic, isotropic
material is required.

Keyword Description
1 Area Area of truss

No stress or strain output is available for trusses.

3.21 Ftruss

The Ftruss is a simple truss with a stiffness that is defined using a function. Typically
the function is a user defined function (also called a run time compiled function or RTC).
See section 2.28.12.

Trusses have stiffness in only the axial direction. While they exist in a 3 dimensional
world, forces orthogonal to the axial direction result in no resistance, i.e. they are singular.
The axial force for an Ftruss element is defined as,

~F (~Ln, t) = −K(|~Ln|, tn) ~Ln (63)

UNCLASSIFIED - UNLIMITED RELEASE 273

where ~Ln is the vector from the first point to the second at time tn. Note that |~Ln| is the
instantaneous length of the truss. The force is always in the direction of the instantaneous
element.

Note that K a constant is NOT the expression for a standard
truss. Rather, F = −Ko dx implies that K = Kodx

Lo+dx , where Lo
is the nominal truss length and Ko is the stiffness of a stan-
dard truss. The definition in equation 63 is necessary so a force
may be applied when dx is zero, as in an electrostatic force for
example.

If a standard (non user) function is used, the stiffness is a function of truss extension only.
It may not be a function of both extension and time.

Input to the Ftruss element is similar to that for the truss element. The attributes
and parameters are listed in table 88, and a demonstration example is provided below.8

BLOCK 88
Ftruss
function 88
scale 1.0
material 17 //optional material
area 0.01 //area required iff material defined

END

If the material keyword is not found, no mass matrix is generated for the element. If a
material is found, then area must also be defined. Like a standard truss, area is the first
Exodus attribute. The area and material properties are used only to compute the mass
properties of the element, and may be omitted.

The scale term can be defined using the input file, or alternatively, it may be defined
using the second Exodus attribute.

3.22 ConMass

Concentrated masses are used to apply a known amount of mass at a point location. Because
many meshing tools build beams as a building block forConMass, the geometry definition
may be either a line or a point, i.e. the Exodus file element types are BEAM, BAR,

8 Recall that attributes are ordered data that may be specified in the Exodus file, providing a variable
which changes with each element. Parameters may be specified in the input file, and are applied uniformly
to all elements in the block.

274

Table 88: Ftruss Attributes and Parameters

Name Type Default Comment
1 Area Real 0 required if a material is specified.
2 Scale Real 1 multiplier for the function
- Function int required function identifier (see section 2.28)
- Material string optional If the material specification is provided,

it must point to a valid material (sec.
2.26), and an area must also be pro-
vided.

TRUSS or SPHERE. If a line-type element is used, all the mass is associated with the
first node of the element.

Parameters for the ConMass are listed below. Because of difficulties in translation or
generation of the model, the parameters found in the Exodus file are not normally used for
a ConMass. This avoids the confusion generated when mass constant defaults may have
been taken from beams for example. As a result, all parameters must be specified in the
input or the analysis will fail.

This behavior can be tedious however, if many concentrated masses are found in the
model, and if the analyst is confident that the attributes are appropriate for these elements.
In this case, use the ConMassA element. It is identical to the ConMass, but uses the
default attributes from the Exodus file. Typically seven attributes would be specified there.

keyword Description
1 Mass concentrated mass
2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG

As an example element block,

Block 5
ConMass
Mass 1000.0
Ixx 1.0
Iyy 2.0
IZZ 1.5
offset 30.0 40.0 50.0

UNCLASSIFIED - UNLIMITED RELEASE 275

End

TheConMass moments of inertia are defined at the location of theConMass. The
offset can be used to specify inertial terms about a different point.

A ConMass element will activate either 3 or 6 degrees of freedom on the node the
mass is located. Every ConMass element will activate "DispX", "DispY", and "DispZ". A
ConMass element with non-zero inertial terms or an offset will activate "RotX", "RotY",
and "RotZ". In a case such as a spring-mass system where only one translational degree of
freedom is desired, the mass should be constrained in the other directions. If ConMass
elements are attached to solid elements, through shared nodes or a 2D element, either the
inertial terms should be set to zero or the rotational degrees of freedom should be constrained.
Failing to properly constrain the ConMass may result in a solver out of bounds error or
incorrect results.

3.23 Spring

The Spring element provides a simple spring connection between two nodes in a model.
Note that the direction of application of the spring should be parallel to a vector connecting
the nodes of the spring. It is usually preferable to have the nodes of the spring be coincident.
Springs are defined in the Exodus database using BEAM or BAR elements.

The Spring element has three required parameters (the translational spring stiffnesses).
Rotational parameters are supported using theRSpring element described in section 3.24.
Currently there is no way to attach off-diagonal elements, i.e. there is no Kxy spring element.
If that is required, a combination of a spring and a multi-point constraint must be used.

Springs can be defined in user defined coordinate systems.

Keyword Description
1 Kx translational spring constant in X
2 Ky translational spring constant in Y
3 Kz translational spring constant in Z

As an example element block,

Block 51
Spring
Coordinate 7
Kx 1e6
Ky 1.11E7
Kz 1000

End

276

3.23.1 Spring Parameter Values

It is strongly recommended that all three values of the spring constants be nonzero. This
is especially important in parallel analysis performed using domain decomposition. Many
domain decomposition tools may partition the model such that zero spring constants lead
to singular domain stiffness matrices. This is true even if other elements may eliminate the
singularity. This can cause the solver (particularly FETI) to fail.

While setting nonzero spring stiffness helps to avoid solver problems, the underlying
domain decomposition problems still exist for parallel calculations. At the time of this
writing, all available domain decomposition tools have difficulty with linear elements and
particularly with springs. This invariably leads to load balance problems, and may introduce
other problems. In many cases in large models, it may be better to replace the spring
elements by solid element meshes which more accurately represent the physical connection.
While there are more degrees of freedom in the calculation, the accuracy is enhanced, and
domain decomposition problems are largely eliminated.

3.24 RSpring

The RSpring element provides a simple rotational spring connection between two nodes
in a model. It is usually preferable to have the nodes of the spring be coincident. RSprings
are defined in the Exodus database using BEAM or BAR elements.

The RSpring element has three required parameters (the rotational spring stiffnesses). It
is strongly recommended that all three components have some stiffness. This is particularly
important when doing parallel analysis (see the discussion in section 3.23.1). Translational
stiffness require the use of the Spring element described in section 3.23. Currently there
is no way to attach off diagonal elements, i.e. there is no Kxy spring element. If that is
required, a combination of an RSpring and a multi-point constraint must be used.

RSprings can be defined in user defined coordinate systems. The relevant parameters are
listed in the table.

Keyword Description
1 Krx rotational spring constant in X
2 Kry rotational spring constant in Y
3 Krz rotational spring constant in Z

As an example element block,

Block 52
RSpring
Coordinate 7

UNCLASSIFIED - UNLIMITED RELEASE 277

Krx=1e6
Kry = 1.11E7
Krz 0.1

End

3.25 Spring3 - nonlinear cubic spring

The Spring3 element provides a nonlinear spring connection between nodes in a model.
Note that the direction of application of the spring should be parallel to a vector connecting
the nodes of the spring. It is usually preferable to have the nodes of the spring be coincident.
Springs are defined in the Exodus database using BEAM or BAR elements.

The Spring3 element has nine required parameters (the translational spring stiffnesses).
There is no way to attach off diagonal elements, i.e. there are no Kxy spring elements. If
that is required, a combination of a spring and a multi-point constraint must be used.

The force applied by the Spring3 is defined as a cubic polynomial in each of the
coordinate directions. Thus,

Fx = Kx1 · ux +Kx2 · u2
x +Kx3 · u3

x (64)

For linear analyses, only the first term is used.

Cubic springs may be defined in user defined coordinate system.

Keyword Description
1 Kx1 translational linear spring constant in X
2 Ky1 translational linear spring constant in Y
3 Kz1 translational linear spring constant in Z
4 Kx2 translational quadratic spring constant in X
5 Ky2 translational quadratic spring constant in Y
6 Kz2 translational quadratic spring constant in Z
7 Kx3 translational cubic spring constant in X
8 Ky3 translational cubic spring constant in Y
9 Kz3 translational cubic spring constant in Z

As an example element block,

Block 51
Spring3
Coordinate 7
Kx1 1e6

278

Ky1 1.11E7
Kz1 0
Kx2 0
Ky2 0
Kz2 0
Kx3 1e4
Ky3 1.11E5
Kz3 0

End

3.26 Dashpot

A dashpot represents a damping term proportional to velocity. Dashpot elements combine
a viscous friction damper with a simple linear spring. The spring is included to avoid singular
stiffness matrices when dashpots are connected without springs. Dashpots are currently only
used in transient dynamic, direct frf and complex eigen analyses. For other analyses only
the spring term will be used.

The damping factor is the damping matrix entry. It has units of force·time/length. For
a single degree of freedom system with a mass=M , the following equation is satisfied.

K · u+ c · u̇+M · ü = f(t) (65)

Currently dashpots are defined in the basic coordinate system only. Because they are
single degree of freedom elements, the direction must also be defined (i.e. cid=1, 2 or 3).
There are three parameters. All are required.

Keyword Description
1 K translational linear spring constant
2 c damping factor
3 cid coordinate direction (1, 2 or 3)

As an example element block,

Block 51
Dashpot
cid=1 // dashpot is in the X direction
K=1e6
c=1e5

End

UNCLASSIFIED - UNLIMITED RELEASE 279

Dashpots may be represented in the Exodus file with any linear element. The Truss
element most closely mimics the dashpot’s single degree of freedom behavior, and may be
the best definition for domain decomposition tools.

Caution should be exercised when using dashpots (or any single degree of freedom ele-
ment). The remaining degrees of freedom must be properly accounted for, or the system
matrices will be singular. Care should also be exercised to ensure that if the nodes of the
dashpot are not coincident, that the constraint force lies along the axis of the element -
failure to do this can result in models that have nonzero rotational modes. There may also
be important domain decomposition issues with dashpots. See section 3.23 for a discussion.

3.27 SpringDashpot

The SpringDashpot element provides a general, fully coupled spring and dashpot
connected to a pair of nodes. It is a linear element only, and is not corotational. It supports
stiffness and damping in the translational and/or rotational degrees of freedom. The relevant
parameters are described in Table 89.

As shown in the table, all the elements of the matrices may be entered for this element.
An example follows.

Block 100
SpringDashpot

Kxx = 1e4
Kyy = 1e4
Kzz = 1e4
Kxy = -1e4
Kyz = -1e4
Byz = 3.2

END

3.28 Hys

The Hys element provides a simple, one dimensional approximation of a joint going
through microslip. Many simple joints can be represented by their hysteresis loop, a curve
in the displacement vs. force plane. The relevant parameters of this element are indicated
in the table, and illustrated in Figure 62.

Keyword Description
1 Kmax maximum slope of f vs u curve
2 Kmin minimum slope of f vs u curve
3 fmax maximum possible force
4 dmax maximum possible displacement

280

Name Description
1 Kxx Translation Stiffness, Kxx

2 Kyy Translation Stiffness, Kyy

3 Kzz Translation Stiffness, Kzz

4 Kxy Translation Stiffness, Kxy

5 Kxz Translation Stiffness, Kxz

6 Kyz Translation Stiffness, Kyz

7 Krxx Rotation Stiffness, Krxx
8 Kryy Rotation Stiffness, Kryy
9 Krzz Rotation Stiffness, Krzz
10 Krxy Rotation Stiffness, Krxy
11 Krxz Rotation Stiffness, Krxz
12 Kryz Rotation Stiffness, Kryz
13 Bxx Translation Damping
14 Byy Translation Damping
15 Bzz Translation Damping
16 Bxy Translation Damping
17 Bxz Translation Damping
18 Byz Translation Damping
19 Brxx Rotation Damping
20 Bryy Rotation Damping
21 Brzz Rotation Damping
22 Brxy Rotation Damping
23 Brxz Rotation Damping
24 Bryz Rotation Damping
25 coordinate coordinate frame

Table 89: SpringDashpot Parameters

UNCLASSIFIED - UNLIMITED RELEASE 281

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Fmax

Displacement

Fo
rc

e

dm
ax

km
ax

kmin

Figure 62: Hys element parameters

The fmax, dmax pair define the limits of applicability of the element. The element
will fail if the internal force exceeds fmax or the displacement exceeds dmax. The slope of
the curve at the origin is kmax. It represents the small amplitude response of the system.
The slope at the extremum, i.e. at (dmax,kmax) is kmin.

A Hys element uses a Beam or truss element in the Exodus file. At the current time, the
element may only be defined in the X direction. An example of the Sierra/SD input is
shown below.

BLOCK 2
Hys
Kmax 4.5e+7
Kmin 3.0e6
fmax 5.92
dmax 0.9833e-6

END

282

3.29 Shys

A Shys is the whole joint model developed by Smallwood and is an element which uses
a Beam or truss element in the exodus file. The element is a 2.5 dimensional element with
an Shys element in both the X and Y directions and a linear spring element in the Z
direction. The Shys element is assumed identical in both the X and Y directions in this
formulation. A coordinate system can be defined to orient the element correctly.

This element is being phased out in favor of the Joint2g element, where similar
constitutive behavior can be specified if desired.

An example of the Sierra/SD input is shown below.

Keyword Description
1 n Exponent describing slope of force-dissipation

curve at very small amplitudes
2 k Linear stiffness of Smallwood’s element
3 kNL Coefficient for non-linear stiffness
4 kz Linear translational stiffness in the Z direction
5 k_r Linear rotational stiffness (optional, default = 0)

The Shys element does not use the attributes defined in the exodus file for default
values of the optional parameters. A detailed discussion of the theory of the Shys element
as well as how to determine the parameters can be found in the reports by Smallwood (Ref.
48).

BLOCK 2
shys
coordinate 2
n = 1.39
k = 1.3167e6
kNL = 1.8499e6
k_z = 1.6e6
k_rot = 1.e9

END

3.30 Iwan

The Iwan model as a stand alone element has been phased out. Instead
use the Joint2G element with an Iwan constitutive model.

UNCLASSIFIED - UNLIMITED RELEASE 283

3.31 Joint2G

The Joint2G element2 was devised to facilitate the implementation of “whole joint”
models in Sierra/SD . Beyond that it offers a workbench of considerable flexibility for
specifying the nature of adherence between surfaces.

Each Joint2G element connects a pair of nodes (or grids, hence the “G” in Joint2G);
it is a member of the geometrically one-dimensional class of elements OneDim. It’s unique
advantage is that it permits users to specify independently the constitutive behavior of each
of the degrees of freedom connecting its node pair.

The constitutive behavior is implemented through a constitutive class that provides gen-
eralized scalar forces in response to corresponding generalized displacements. Though the
class name is Axial, members of the class provide responses that do not make reference to
the axial or rotational nature of the deformation.

The decoupling of the constitutive response from the element machinery facilitates creat-
ing additional constitutive classes without having to recreate the whole element machinery.

TheMacroblock provides a complementary functionality which may be used to spec-
ify the mechanically parallel behavior through the use of multiple, co-located Joint2G
elements. See section 2.25.

3.31.1 Specification

The meshed objects that map into the Joint2G element are defined in the Exodus
database using BEAM or BAR elements. The Joint2G element does not make use of at-
tributes defined in the Exodus file; all properties must be specified in the BLOCK and
PROPERTY cards. In the example below, properties are assigned to element block “2”.

BLOCK 2
coordinate 5
shear_axis 2
joint2g
kx=iwan 1
ky=elastic 1.0e6
kz=elastic 1.0e6
krx=null
kry=null
krz=null

END

2Joint2G elements are supported and documented by Dan Segalman.

284

The above statement declares “BLOCK 2” to be of type Joint2G. It also declares the
constitutive response in the “x” direction to be that of Segalman’s 4-parameter Iwan model
(SAND2002-3828). The parameters to be used in this model are those specified in “Property
1” defined below. In this case, the four parameters chosen are chi, phi_max, R, and S (χ,
φmax, R, and S in the SANDIA report). The Iwan properties can be specified alternatively
by the parameter set chi, phi_max, F_S, and beta (χ, φmax, FS, and β).

property 1
chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

END

The constitutive behavior in the “y” and “z” directions is elastic with stiffness specified
by the third argument - 1.0 x 106 in this case.

In this example, there is no specification for constitutive behavior in the three rotational
directions. The NULL specification merely means that those degrees of freedom in the rele-
vant nodes are are not activated (“touched”) by this element. Because of artifacts associated
with parallelization, it is recommended that if any of the rotational degrees of freedom are
active (not NULL), they all should be active.

The directions (“x”, “y”, and “z”) employed above are those associated with the coordi-
nate system declared for the block. In the example shown, there is an explicit reference to
coordinate system 5. If there is no such explicit reference to a coordinate system, then the
“x”, “y”, and “z” directions are those of the global coordinate system.

In the case when the joint2G element is used in conjunction with a tied joint, then the
shear_axis can be used to specify the “x” direction for the constitutive response of the
joint2G. Note that the shear_axis parameter is only meaningful when the joint2G is
used in conjunction with a tied joint.

The shear_axis parameter allows the user to specify the “x” direction for the con-
stitutive behavior. Since shear_axis is set to 2 in the above example, the “x” direction
will be derived from the second component of coordinate 5. For more information on the
shear_axis parameter, we refer to Figure 28 and section 2.23.

3.31.2 Constitutive Behavior

3.31.2.1 Elastic: Undamped, linear elastic behavior is defined by the keyword “elastic”
followed by the value of the parameter. No “property” section is required.

UNCLASSIFIED - UNLIMITED RELEASE 285

3.31.2.2 Damper: Linear, damped behavior is obtained using a keyword “damper” in
the joint2g definition, and using a property definition to specify the stiffness and damping
terms. Typically each direction will require a different property definition.

BLOCK 3
JOINT2G
kx=damper 1
ky=damper 2
kz=damper 3
krx=null
kry=null
krz=null

END

PROPERTY 1
DAMPER
K=1e6
MU=.2

END

3.31.2.3 4-Parameter Iwan Model (iwan): The Iwan element is a collection of spring
slider elements designed to provide a predicted model of joint behavior (including energy
loss). A detailed discussion of the theory of the Iwan element as well as how to determine
the parameters can be found in the reports by Segalman (Ref. 49). Information about
the Iwan element, and its relationship to other joint elements may be found in the Sandia
internal report by Segalman and Starr (see 50).

The schematic of the Iwan model is shown in figure 63. Parameters for the behavior may
be specified using either an older definition (Table 90), or a newer set (Table 91). The newer
parameters are described briefly below, but the analyst is referred to the documentation for
more detail.

chi: determines the slope of the dissipation-force curve. Typically 0 < χ < −1. A value of
zero corresponds to a coulomb type loss in Mindlin solutions. A value of χ = −1 corre-
sponds to a viscous like (but amplitude dependent) loss with dissipation proportional
to the square of the amplitude. Dissipation follows the relation,

Dissipation ≈ (Amplitude)χ+3

beta: determines the shape of the dissipation-force curve. Larger β (say 5), produces power
law behavior over all amplitudes. Beta affects both the shape of the hysteresis curve
within microslip (Figure 64), and the abruptness of the transition from microslip to
macroslip as shown in Figure 65. 0 ≤ β <∞.

286

k

x

φ

k

x

φ

k

x

φ

k

x

φ

U(t)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

1

1

n

n

K1

3

3

2

2

F(t)

u(t)

Figure 63: Iwan Constitutive Model

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at

very small amplitudes
2 R Constant coefficient in distribution
3 phi_max Maximum break free pseudo-force
4 S Strength of singularity in break free force distribution

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 90: Older Iwan 4-parameter model

UNCLASSIFIED - UNLIMITED RELEASE 287

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at

very small amplitudes
2 beta shape parameter of force/dissipation curve
3 K_T Tangent stiffness at very low loads
4 FS Maximum break free pseudo-force

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 91: Revised Iwan 4-parameter model

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

u/φmax

F(
u)

/F
S

β=0
β=1

Figure 64: Dimensionless hysteresis curves for the four-parameter Iwan model with χ = −1/2
and two values of β.

KT: determines the slope of the force-displacement curve at low amplitudes. This is equiv-
alent to a spring constant, and is used as such in analyses for which the element is
treated linearly.

FS: determines the force at which the last slider gives out, and element goes entirely into
macroslip. The Iwan element is a statistical distribution of spring/slider elements.
This is a point on that distribution.

3.31.2.4 Smallwood’s Hysteresis Model (shys): D.O. Smallwood developed a three
parameter model that captures the power-law behavior of energy loss with force amplitude.
The model parameterizes the hysteresis loop determined from experimental data in such a
way that the power law behavior is preserved.

288

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

u/φmax

F(
u)

/F
S

β=0
β=1
β=∞

Figure 65: Dimensionless static loading curves for the four-parameter Iwan model with
χ = −1/2 and three values of β, as the model goes into macroslip.

Keyword Description
1 n Exponent describing the slope of the force dissipation

curve at small amplitudes
2 k Coefficient for the linear stiffness
3 knl Coefficient for the non-linear stiffness

A detailed discussion of the theory of the shys model as well as how to determine the
parameters can be found in reference 51.

PROPERTY 1
n = 1.39
k = 1.3167e6
knl = 1.8499e6

END

3.31.2.5 One Dimensional Gap Model (gap): The gapmodel attempts to represent
the behavior of a gap closure with a bilinear elastic element. For proper numerical behavior,
the stiffness of the open gap should not be more than a few orders of magnitude less than
the stiffness when the gap is closed. The Joint2G implementation of the gap model
is identical to the axial behavior of NASTRANS cgap/pgap element as well as the axial
behavior of the stand alone version of the gap element implemented in Sierra/SD (section
3.32).

UNCLASSIFIED - UNLIMITED RELEASE 289

�
�
�
�
�
�
��
��

��
��

��
��

��
��

��
���

f

disp

fyield

Slope= K∗Kp

K+Kp

Slope=K

Figure 66: Eplas Model

Keyword Description
1 Ku Unloaded Stiffness
2 Kl Loaded Stiffness
3 U0 Initial Gap Opening
4 F0 Preload (force at U0)

PROPERTY 1
ku = 1e5
kl = 1e6
U0 = 0.01
F0 = 200

END

3.31.2.6 Elastic Plastic Hardening Model (eplas): The eplas element is an elastic-
plastic 1-dimensional element with linear isotropic hardening. Both the plastic strain and
the hardening variable are initialized to zero. The parameters are illustrated in Figure 66.

Keyword Description
1 k Linear Stiffness
2 kp Hardening Stiffness
3 fyield Force at Yield

PROPERTY 1

290

k = 1e6
kp = 1e5
fyield = 1e4

END

3.31.2.7 One Dimensional Spring-Dashpot Model (damper): A damper repre-
sents a damping term proportional to velocity. Damper elements combine a viscous friction
damper with a simple linear spring. The spring is included to avoid singular stiffness ma-
trices when dampers are connected without springs. Dampers are currently only used in
transient dynamic, direct frf and complex eigen analyses. For other analyses only the spring
term will be used. The behavior of this element is identical to dashpot.

The damping factor is the damping matrix entry. It has units of force·time/length. For
a single degree of freedom system with a mass=M , the following equation is satisfied.

K · u+ µ · u̇+M · ü = f(t) (66)

Keyword Description
1 K Stiffness
2 Mu Viscous Damper Coefficient

PROPERTY 1
K = 1e6
Mu = 1e2

END

3.31.2.8 Additional Constitutive Behavior: The philosophy employed in the imple-
mentation of the Joint2G element of decoupling the constitutive behavior from the element
machinery should facilitate the implementation of other constitutive models. Among those
whose implementation is foreseen are the following:

• Bouc-Wen hysteresis model

• Preisach hysteresis model

3.32 Gap

Gap elements are modeled after the non-adaptive nastran CGAP/PGAP elements. They are
intended to provide a simple, penalty type element suitable for modeling simple connections.

UNCLASSIFIED - UNLIMITED RELEASE 291

Note that these elements (like all beam-like elements) when embedded in solid meshes can
result in difficult domain decompositions, and lead to load imbalance.

The Gap element is inherently nonlinear. In linear analysis, the element behaves ap-
proximately like a spring with the stiffness determined by KL and KU and a transverse stiffness,
KT. The parameters of the element are listed in the table below and shown graphically in
Figure 67.

Keyword Description
1 KU unloaded stiffness
2 KL loaded stiffness
3 KT transverse stiffness (closed)
4 U0 initial gap opening
5 F0 Preload, i.e. force at U0
6 coordinate Required coordinate frame.

The unloaded stiffness, KU, represents the stiffness of the element when the gap is open. It
must be greater than zero. The loaded stiffness, KL, represents the stiffness when the gap
is closed (as shown in the figure). The stiffness is KL when UA - UB is greater than U0.

The initial gap opening and preload define the corner point in the force/deflection curve
as shown in Figure 67. Typically these will be zero.

A gap element provides for transverse stiffness and friction. When the gap is closed,
the transverse stiffness is KT. If the gap is open, the transverse stiffness is reduced to
KT ′ = KT ×KU/KL.

The coordinate frame is an optional attribute of the gap element. The gap open and
closes along the X axis of the frame. Note that the direction of the coordinate frame is
quite important. The element determines a quantity UA − UB along this coordinate axis.
This axis may not align with the coordinate alignment of the elements, which can lead to
confusion. If the coordinate frame is not provided, each gap element will have a coordinate
frame generated such that the gap opens and closes along the line between the two points.
If the points are coincident, then a coordinate frame must be provided.

The gap element is a simple penalty type element that somewhat mimics the effect of a
physical gap. Choice of the value of KL is very important to success of the element. Good
values are somewhat in the range of the neighboring element stiffness. Too large a value
can lead to matrix condition problems. Too small a value results in excessive softness and
penetration in the gap.

Because the element is nonlinear, it has a significant impact on solutions. As described
in section 2.1.25 (and the update_tangent keyword), the default behavior for the
nonlinear solver is a partial Newton iteration. This means that the tangent stiffness matrix
is not updated between iterations. Thus, if KL and KU are quite different, the solver will
be using the wrong slope in the newton loop. Many, many iterations may be required for

292

convergence. You may want to turn on the ’nlresidual’ option in the echo section (see 2.7)
which will put convergence information into the results file.

An example is shown below.

BLOCK 2
GAP
KL 4.5e+7
KU 3.0e6
KT=1e6
f0 5.92
u0=0.9833e-6
coordinate 5

END

x compression

Fx compression

�
�
�
�
�
���

��
���

���
���

���
��

t

U0

F0

UA - UB

Slope=KU

Slope=KL

Figure 67: Gap element Force-Deflection Curve

3.32.0.1 Gap Issues. The gap element is definitely more complex than most elastic
elements. Here is a partial list of “gotchas” that we have observed.

• Gaps should normally be zero length elements. Like springs, a gap that has a physical
length will not be invariant to rigid body rotation. See section 5.3.5. One approach to
this would be to use a combination of beam and gap elements. Note however, that if
KT is zero, and the gap opens and closes along the line between the beam endpoints,
the element is invariant to rotation.

• The gap element may use a coordinate frame to define its direction. In this case the
direction is NOT set by the nodal coordinates.

• The direction of the gap element must correlate to the displacement difference from
UB − UA. It is very easy to get this direction reversed.

UNCLASSIFIED - UNLIMITED RELEASE 293

• If you setU0, you must also set F0. This element does not constrain the force/displacement
curve to go through zero. The input must do this. The gap element may thus be used
to enforce an initial displacement or force. That may not be what you want. It can
cause very slow convergence on the initial time step.

• Significant numerical damping may be required for convergence. Closing the gap can
cause energy to be moved into higher frequencies. Without numerical damping, this
energy can multiply until the solution becomes unstable. Numerical damping is best
introduced by setting “rho” in the time integrator. Values of “rho=0.2” to “rho=0.7”
have worked well. It is problem dependent.

Physically closing a gap would cause some energy loss, either by microslip, or by
a small amount of local plastic deformation. Numerical damping can dissipate this
energy that is removed from the physical system by means that are not included in the
finite element model.

• This gap element may not conserve energy. This is demonstrated in Figure 68, where
a mass is dropped onto a gap. A completely elastic rebound would take the mass back
to zero. Instead, it rebounds significantly above zero. This issue comes about because
of time discretization. The mass “penetrates” the gap region too far, which stores too
much energy in the element. It is then expelled with too much velocity. The only
solution with this element is to reduce the integration step.

• Setting either KU or KL to zero is a recipe for disaster in parallel. Use a small positive
value even if physically the unloaded stiffness may be zero.

3.33 Gap2D

The Gap element of the previous section provides a useful construct for planar type in-
teractions. A common modeling issue is a bolt in an oversized hole. To model this interaction
an ellipsoidal gap element (or Gap2D) may be required.

TheGap2D element operates just like the Gap element except that the gap could open
in 2 dimensions. The gap is open provided that the element displacement is within an ellipse
defined by the major and minor axes.

(
ux
U0X

)2
+
(
uy

U0Y

)2
< 1 (67)

The major and minor axes of the ellipse are defined in the x and y direction of the required
coordinate frame.

Parameters of the Gap2D element are listed below.

294

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−6

Time

D
is

p

U0=1e−7

Figure 68: Mass bouncing off a Gap. With this large time step the model is not conserving
energy. Reducing the time step is required to correct the problem.

UNCLASSIFIED - UNLIMITED RELEASE 295

Figure 69: Gap2D force diagram

Keyword Description
1 KU unloaded stiffness
2 KL loaded stiffness
3 KT transverse stiffness (z direction)
4 U0X initial gap opening, major direction
5 U0Y initial gap opening, minor direction
6 coordinate Required coordinate frame.

While the gap geometry is defined as an ellipse, the stiffnesses are not. In the open
section of the element, the in-plane stiffness is KU, and is independent of direction. Likewise,
in the closed gap region, the in-plane stiffness is independent of direction, and is defined by
KL. The out of plane stiffness for this element is always KT. Note that the transverse stiffness
behavior is significantly different than that of the standard Gap element.

The definitions above define the gradient of the force only, and for this nonlinear force,
the value of the force depends on the path chosen for integration. For this element, we define
the force as the integral along the shortest line from the origin.

In Figure 69, two possible integration paths are shown for arriving at the point (x1, y1).
In the first path, we integrate to (x1, 0) and then up to (x1, y1). The y component of force is
f (1)
y = KL · y1. In path 2, we follow the straight line through (xb, yb). The associated force is
f (2)
y = KU · yb + KL(y1 − yb). For this element, we always choose the shortest line path (path
2). This ensures that the force is not history dependent.

296

3.34 GasDmp

The GasDmp element is a nonlinear, beam-like element that simulates the damping
forces on MEMS devices due to gas pressure as MEMS beams vibrate. The element has no
stiffness, but has damping roughly proportional to velocity/L3, where L is the distance from
the beam to the substrate. The element is very experimental, and still under development.
Contact Troy Skousen or Burak Ozdoganlar at 845-0427 for details.

Inputs to the GasDmp element are as follows.

Keyword Description
1 W Beam width (length units)
2 dL Considered length of beam (length)
3 mm Molecular mass of gas (mass)
4 p0 Ambient pressure of gas (pressure)
5 T Ambient temperature of gas (temperature)
6 muRef Reference viscosity (pressure * time)
7 TRef Reference temperature (temperature)
8 ww Viscous temperature exponent

Currently all of the parameters are implemented through the input file and not through the
Exodus_II file. At a future date the beam width and length will be tied to the mesh.

The theory for the development can be found in an internal Sandia draft report available
on the Sandia internal web at,
http://www.jal.sandia.gov/Salinas/external-reports/microbeam2.pdf
Most of the implementation is associated with equations 9 and 10 of this report.

3.35 Nmount

TheNmount element is a Navy-specific mount element that provides an external force
at user-specified points in the model. These forces are formed from a constitutive equation
that is supplied by the user in the form of a subroutine. The Nmount capability provides
an interface capability that allows the user to input their own subroutine that evaluates the
constitutive equation.

An example of the user interface is shown in Figure 70. Mount orthogonal directions must
be provided either as attributes in the Exodus file, or using the “Orientation” keyword
in the “Block” section. The relation between the orientation vector and internal element
coordinates is shown in Figure 71. Remaining information is provided in the “Block” section.
Each mount type requires a separate block entry. Mount parameters are provided as text
input in the Block section.

http://www.jal.sandia.gov/Salinas/external-reports/microbeam2.pdf

UNCLASSIFIED - UNLIMITED RELEASE 297

Each mount type may require a different number of mount parameters. If more pa-
rameters are provided than required for this mount, the additional parameters are ignored
without warning. If less parameters are provided than are anticipated for the mount, the
last parameters are set to zero, a warning is printed, and the analysis continues.

BLOCK 41378
NMOUNT
MOUNT TYPE = 99

Parameters = 1.414 3.141 2.713
Orientation = 0 0.7 1

END

Figure 70: Sierra/SD Mount Interface

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������

������
������
������
������
������
������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Z

X

Y

elem

elem

elem

V

����

��
��
��
��

Node 1

Node 2

Figure 71: Nmount Orientation
Xelem Normalized vector from node 1 to node 2. May change as the

structure deforms.

~V User provided orientation vector.

Zelem = X̂elem×~V
|X̂elem×~V |

Yelem = Ẑelem × X̂elem. A normalized vector in the Xelem
~V plane, and

orthogonal to Xelem.

3.35.0.1 Stability: The Nmount element applies a force to the joining nodes in much
the same way as an externally applied force. It provides no contribution to the stiffness
matrix, and as such resembles an explicit element. Thus, stability issues can arise with this
formulation. For certain models, damping has been shown to stabilize the formulation. The
user may need to experiment with time step and damping levels to determine appropriate
parameters for a stable solution.

298

3.36 MPC

Multi-Point Constraints (orMPCs) are constraint equations applied directly to the stiffness
matrix. They are not elements, and are not available from an Exodus database. However,
in many respects they look like elements, and can be thought of as elements. Some analysis
codes treat them as pseudo elements.

All MPCs describe constraint equations of the form,∑
i

Ciui = 0

where Ci is a real coefficient, and ui represents the displacement of degree of freedom i.

Unlike many Finite Element programs, Sierra/SD does not support user specification of
constraint and residual degrees of freedom (DOF). In serial solvers the partition of con-
strained and retained degrees of freedom is performed simultaneously by Gauss elimination
with full pivoting so the constrained degrees of freedom are guaranteed to be independent.
In parallel solvers (such as FETI), the constraints are specified as Lagrange multipliers which
involve no such partitioning. Redundant specification of constraint equations is handled by
elimination of the redundant equations and issue of a warning. User selection of constrained
DOF in Nastran has led to significant headaches for analysts who must ensure that the
constrained DOF are independent and never specified more than once.

Each MPC is specified in the input file with a section descriptor. Note that a separate
section is required for each equation (or degree of freedom eliminated). An optional coordi-
nate system may be specified on the input, but must be the first entry in the section3. The
MPC will be stored internally in the basic coordinate system (coordinate frame 0). The
input consists of a triplet listing the global ID of the node, a degree of freedom string, and
the coefficient of that degree of freedom. The degree of free strings are x, y, z, Rx, Ry, Rz.
They are case insensitive. If the global ID of the node in the MPC does not exist in the
model, the code will exit with a fatal error.

Keyword Description
1 coordinate optional coordinate frame with integer id
2 integer integer node number in global model

(The node number MUST USE 1 TO N ORDERING
like Exodus file numbering).

3 dof string string x, y, z, Rx, Ry, or Rz
4 coefficients Real weight associated with this dof

items 2-4 may be repeated as many times as needed

In the following example, the x and y degrees of freedom in coordinate system 1 are con-
strained to be equal for node 4.

3At this time, all the nodes in an MPC must be associated with the same coordinate system.

UNCLASSIFIED - UNLIMITED RELEASE 299

MPC
coordinate 1
4 x 1.0
4 y -1.0

END

IMPORTANT

Constraints are handled in various ways by the linear solvers.
In the serial solver, the dependent degrees of freedom are elim-
inated before the matrices are passed to the solver. In parallel,
we use Lagrange multipliers to handle the constraints. There is
currently no user control of constraint handling methods.
Note also that there are practical differences between rigid ele-
ments (described in the following sections) and constraint equa-
tions that are nominally identical. For parallel solutions, we
are currently using an augmented Lagrange type solution method
with the rigid links. This means that terms are added to the stiff-
ness matrix in parallel with the constraints. In most cases, this
renders the matrices positive definite, and greatly increases ro-
bustness and solution performance with no penalty for accuracy.
Thus, rigid links are recommended whenever possible in parallel
solutions.
Finally note that replacing rigid links with very stiff beams can be
a bad thing to do. The condition of the resulting matrices can be
severely degraded which can lead to significant loss of accuracy.

3.37 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The con-
straints for an RROD may be conveniently stated that the dot product of the translation
and the beam axial direction for a RROD is zero. There is one constraint equation per
RROD.

The RROD is specified using beams or trusses in the Exodus database, with a corre-
sponding Block section in the Sierra/SD text input file. No material is required and any
number of connected or disconnected RRODs may be placed in a block. The following
is an example of the input file specification for RRODs if the Exodus database contains
beams in block id=99.

Block 99

300

Attribute default description
RB_ID - translation identifier

CID_FLAG_INDEP 123456 independent coordinate flag
CID_FLAG_DEPEND 123456 dependent coordinate flag

Table 92: Rbar Exodus Attributes

RROD
END

3.38 RBar

An RBAR is a pseudoelement which is infinitely stiff in extension, bending and torsion.
The constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

TheRBAR is specified using beams or trusses in the Exodus database, with a correspond-
ing Block section in the input file. No material is required and any number of connected or
disconnected RBARs may be placed in a block. The following is an example of the input
file specification for RBARs if the Exodus database contains beams in block id=99.

Block 99
RBAR

END

RBARs can be reordered so that the number of RBARs connected to a single node is
minimized. Having a large number connected to the same node results in a highly populated
matrix and a slow computation. Therefore, reducing the number of connections can shorten
run time. (see the reorder_rbar parameter in the PARAMETERS section 2.3).

The RBAR attributes are listed in Table 92, and are described below.

RB_ID Sometimes a collection of RBARS is a description of a rigid body. This occurs
for example when translating a nastran model containing RBE2 elements. During
translation these bars are grouped into rigid bodies based on their connectivity. The
RB_ID is an index to that grouping.

UNCLASSIFIED - UNLIMITED RELEASE 301

CID_FLAG_INDEP By default, all degrees of freedom are active on both nodes of the
RBAR. Independent dofs are activated on the first node. The “CID_FLAG_INDEP”
allows control over which degrees of freedom are activated. The flag is specified as an
integer which is sum of components.4

100000 X degree of freedom
20000 Y degree of freedom
3000 Z degree of freedom
400 Rx degree of freedom
50 Ry degree of freedom
6 Rz degree of freedom

Thus, ‘123456’ activates all dofs, and ‘123000’ activates only translations.

CID_FLAG_DEPEND By default six dofs are eliminated from the bar. By setting this
attribute to a non-default value, constraint equations may be skipped. The values are
the same as the “CID_FLAG_INDEP” described above. If all 6 dofs are included in
the constraint then a link stiffness will (optionally) be applied. If any dofs are not
constrained, then the link stiffness is not used. See section 2.3.

3.39 RBE2

Sierra/SD has no support for the Nastran RBE2 element. However, in most cases there
is little difference between the RBE2 element and a collection of RBARs.

3.40 RBE3

The RBE3 pseudo-element’s behavior is taken from Nastran’s element of the same name.
Two distinct versions of the element are available, but the older version will be deprecated
sometime in the future. Each method is each described below, with significantly more detail
found in section 3.21.3 of the theory manual . The element is used to apply distributed
forces to many nodes while not stiffening the structure as an RBAR would. The RBE3
uses the concept of a slave node.

Because all the nodes in an RBE3 are not equivalent, each RBE3 requires its own block
ID. In the Exodus file, all links connecting to a singleRBE3 are defined in a single element
block. The input file then specifies that this is an RBE3 element block, as shown in the
example below. If the model requires many RBE3s, a separate block must be specified for
each.

4It is a rather unusual descriptor, but it was designed to somewhat mimic the nastran cid flag.

302

3.40.0.1 Usage. The optional parameters for the Rbe3 pseudo-element are shown in the
table below. These parameters must be specified in the input file, not as attributes of the
Exodus file.

Keyword value Description
refc string reference coordinates for slave
method new or old Constraint computation method
WT 6 reals relative weight of coordinates

refc. The REFC parameter sets the degrees of freedom to activate on the slave node.
The keyword REFC provides a text representation of the active degrees of freedom
involved in the constraints. Thus, REFC=’12’ provides 2 equations that constrain
degrees of freedom associated with X and Y translations. No other degrees of freedom
are affected. If the REFC keyword is not provided, it defaults to REFC=‘123456’,
i.e. constraint relations will be provided for all 6 structural degrees of freedom on the
slave node.

method. This parameter determines which formulation is used to determine the constraint
relations. By default, the new method is used in versions of Sierra/SD newer than
2.0. See below.

WT. The contributions of each of the coordinates of the independent nodes may be scaled by
WT. Most typically this would be used to determine the relative weight of rotational
degrees of freedom on the independent nodes to the computation of the slave node
rotations. The default value is WT= 1 1 1 0 0 0 which means that the rotations do not
contribute to the Rbe3.
Generally we recommend there be no contribution from the rotations. The rotation of
the element may then be determined solely from the translational degrees of freedom
on the independent nodes.
The parameter applies only to the new method. In the old method rotations on the
independent nodes are always ignored.

3.40.0.2 New Method Rbe3. The new formulation of the Rbe3 is based directly on
the published method from MSC nastran. Details of the method are described in section
3.21.3 of the theory manual.

3.40.0.3 Old Method Rbe3. Previous to version 2.0, a version of the RBE3 was gen-
erated based on an ad hoc mathematical approach. This element should act like a Nastran
RBE3 for most applications, but its use is discouraged.5

5 These elements are not identical. In particular, RBE3 elements that have 2 or fewer dependent nodes,
or for which the dependent nodes are colinear will either not work, or not work as anticipated. As outlined
in the theory manual, the rotational degrees of freedom on the independent nodes are ignored. Further, the
old formulation will differ from the new approach if the slave node is far from the centroid of the element.

UNCLASSIFIED - UNLIMITED RELEASE 303

3.40.0.4 Cautions in using RBE3. While a very convenient construct, the RBE3
is not a true element, and it can introduce complexity in the solution. Following are a few
things to bear in mind in using the element.

• Very large RBE3 elements may spread across a large portion of the model. This affects
linear solvers that are typically designed to propagate error locally. As a consequence
convergence may be slow.

• Large RBE3 elements may require a lot of memory. This memory is stored on a single
processor.

• No MPC should be linked to another. Many of our solvers will fail if one MPC type
element shares nodes with another.

• Prescribed accelerations (see section 2.13.2) cannot be applied on an RBE3 or any
other MPC.

• The element has no logic to determine which degrees of freedom of the independent
nodes are active. Thus, if you specifyWT = 1 1 1 1 1 1 the element will try to determine
it’s rotation based on a combination of the translational and rotational degrees of
freedom on the independent nodes. If the rotational degrees of freedom are inactive,
they are treated as zero. This is rarely what is wanted.

• Care must be taken to ensure that only one node of the RBE3 has multiple con-
nections to its links. Further, all links in the RBE3 must be connected to the slave
node.

• We note that many of our trouble tickets come from Rbe3 elements.

3.40.0.5 Example Rbe3. The following is an example of the input file specification for
an RBE3 if the Exodus database contains beams in block id=99.

Block 99
RBE3
refc=123456
method=new
wt=1 1 1 0 0 0

END

3.41 Superelement

Superelements have various meanings in commercial codes. Sierra/SD does not support
a full automatic superelement capability. In section 2.1.5 the procedure for reducing an

304

entire model to a reduced order model is outlined. Import of a such a reduced model (or
superelement) into Sierra/SD is also supported. The superelement described in this
model involves import of a mass and stiffness matrix into a full system model. This linearized
approach complements a Craig-Bampton (and other) reductions, and may be used in any
type of analysis.

Limitations

• The superelement must be small enough to fit on a single processor in a parallel run.
No consideration for superelements which span processors is made.

• Nodes on the superelement interface may be shared across processors. Interior degrees
of freedom are local to a single processor.

• Output of the interface node degrees of freedom will be made in the base model in the
usual way. Output of internal superelement quantities will be made in the superelement
database file.

• No automatic data recovery is available.

• Only a single level of superelement is supported.

• The mass properties report is computed by lumping mass to the interface dofs.

• No geometric stiffness effects are currently accounted for in superelements. The default
at this time is for these elements to return zero geometric stiffness.

User Input

Each superelement must be placed a unique block, i.e. there is one superelement per
block. The following input is provided by the user.

connectivity: To provide the geometric connectivity to the model, the connectivity must
be added to the Exodus file. If the superelement has the same number of nodes as
a standard element, the analyst may choose to use such an element to provide the
connectivity. This can facilitate visualization of the model. When the model is larger,
a tool is provided to directly add the superelement to the Exodus database.6

Note that codes such as nastran input superelements by connecting to the nodes di-
rectly. In a parallel environment, it is critical that the superelement remain on a
processor. As a consequence, the decomposition tool must have knowledge of the su-
perelement. It must therefore be in the finite element database. This is also consistent

6The tool is named “mksuper”. It is part of our standard tools distribution.

UNCLASSIFIED - UNLIMITED RELEASE 305

with the other tools used with Sierra/SD where node numbers are not typically pro-
vided directly. This permits insertion of the superelement in a part, with a subsequent
node reordering from gjoin for example.
Sierra/SD does support an element with more nodes than required for the connec-
tivity map. Thus, a Hex-8 could be used to define the connectivity for a superelement
with 7 nodes on the interface. Obviously the connectivity map cannot have more nodes
than the element.

connectivity map: The equations for the system matrices must be associated with the
nodes and degrees of freedom in the model. The following example creates a map
for an eight degree of freedom reduced order matrix. The first column of the map is
associated with the node index in the element. The second degree of freedom defines
the coordinate direction (typically 1 to 6 for x, y, etc).

// node cid
map 0 0

0 0
1 1
1 2
1 3
2 1
2 2
2 3

In this example, the first two rows of the system matrices are associated with internal
degrees of freedom. These interior dofs are indicated by a zero for both the node index,
and the coordinate direction. Row 3 of the matrix is associated with the first node
in the element connectivity, and with the x coordinate direction. Row 8 is associated
with the second node, and the z coordinate direction.
There must be exactly as many rows in the connectivity map as there are rows in the
system mass and stiffness matrices.
If the node index is less than zero, the row of the matrix associated with that degree
of freedom will not be mapped to the system matrix. This can be used to “clamp” a
generalized degree of freedom.

The node index is NOT the node number in the Exodus file.
Rather it is the index into the element connectivity. Thus, for a
four node element, the index must never exceed 4. This permits
the use of gjoin and other tools without the need to reorder these
terms in the input file.

Alternate formats may be used to provide the map between rows of the system matrices
and degrees of freedom of the residual structure. For these alternate formats to be used,
the netcdf file containing the superelement data must include the cbmap data, which

306

provides an internal mapping between internal rows and columns and the internal
nodes. These methods include the following.

map ascending_id or sorted If the user specifies the node number connectivity of
the superelement in an ascending node order, then we can automatically generate
the map.2 Note, either ascending_id or sorted may be used here, they refer to
identical algorithms.

map locations If the nodal coordinates of the superelement are stored in the netcdf
reduced order model file, then the best match between coordinates of the residual
and the superelement can be used to determine the map. This method works best
if the superelement and residual have the same coordinate locations and if there
are no collocated nodes in the interface.

system matrices: The system matrices must be provided in a netcdf file. These matrices
are available as output of the CBR reduction process (section 2.1.5) and may also be
generated with other tools such as nasgen. The file must contain the following.

Kr. The reduced stiffness matrix. This is required for all analysis.
Mr. Most analyses require a reduced mass matrix as well. It’s dimension must match

that of the stiffness matrix.
Cr. A reduced damping matrix may be used for some analyses. It is entirely optional,

but if present, must be of the same dimension as Kr.
maps that connect the degrees of freedom of the superelement to the degrees of free-

dom of the residual structure.

A good reducedKr for 3D analysis should have exactly 6 zero energy modes. It must be
symmetric (Sierra/SD will try to symmetrize it). TypicallyMr would be nonsingular.
Failure to meet these requirements can confuse the entire solution procedure, and lead
to erroneous solutions.

transfer matrices: Output of results on interior points in the superelement are facilitated
using optional output transfer matrices (OTM). These are described in some detail in
the section on model reduction (2.1.5). These matrices are used only if superelement
output is requested in the output specification. The following matrices apply.

OTM Nodal output transfer matrix.
OTME Element output transfer matrix.
OutMap An optional node map for the OTM.
OutElemMap An optional element number map for OTME.

2 With the “mksuper” application, it is easy for the user to set up an element with ascending order, but
most tools do not know how to visualize the element. Visualization may be easier using standard elements,
but the the restriction that the connectivity have ascending node ids is confusing.

UNCLASSIFIED - UNLIMITED RELEASE 307

skip_output: Optionally provides a means of disabling all output to the netcdf results files.
This is particularly useful if the analyst wishes to use the same netcdf data for multiple
superelements in the model. Without this keyword, each of these superelement blocks
would be writing to the same file location, resulting in corrupted data.

output specifications: Output from superelements may be requested in the “ECHO” or
the “OUTPUT” sections. If requested in the “OUTPUT” section, then a new Exodus
file will be generated based on the information and name of the netcdf file. The number
of nodes in the new file is the sum of the number of nodes on the interface and the
number of nodes in the output transfer matrix, OTM. The number of elements is the
number of elements in the OTME. All elements will be placed in a single element block.
For either the echo or the output sections, output of superelement data is specified by
the superelement keyword.

Because we don’t know the connectivity of the elements in the OTME, all such elements
will be defined as sphere elements, and will be collocated on a single node in the model.
This makes visualization pretty much useless, but the element data is preserved for
other types of post processing.

Likewise, no coordinate information is available for the interior nodes of the model.
These elements will be located at the origin of the system.

sensitivity_param: When the cbr analysis that generated the superelement included a
sensitivity anslysis, the netcdf file containing the superelement matrices also contains
derivatives of the reduced matrices with respect to the parameters. This informa-
tion can then be used in the superelement block to set the superelement parameters
to whatever values are desired. This uses the linear Taylor series expansion of the
sensitivity information of the Craig-Bampton model to compute the updated reduced
matrices, and thus by-passes the need to go back and re-generate the Craig-Bampton
model when the parameters are perturbed. The sensitivity_param allows the
user to input specific values of the parameters for the superelement.

Parameters

The parameters for the superelement block are listed in the table.

308

Keyword value Description
file string netcdf file containing matrices
savememory yes or no controls storage of matrices

in memory
diagnostic int 0 = run no diagnostics

1 = compute Kr * RBM
2 = compute eig(Kr,Mr)

map ints table of node/cid pairs, OR
string “ascending_id” or “sorted” or “locations”

skip_output N/A optionally disable netcdf output
sensitivity_param Int Real parameter index and value of sensitivity parameter

Although the previous table of parameters only had one sensitivity_param line, mul-
tiply sensitivity_param parameters can be input in the superelement block, using the
index following the sensitivity_param parameter to specify the parameter number.

Block Example

The above parameters are entered in the block section of the input file. For example,

BLOCK 10
superelement
file=’example.cdf’
// node cid
map 0 0

0 0
1 1
1 2
1 3
2 1
2 2
2 3

diagnostic=1
sensitivity_param 1 0.01 // thickness in CBR shell model
sensitivity_param 2 30e6 // modulus in CBR shell model

END

In this case, there are two sensitivity parameters, one for the thickness of a shell block in
the Craig-Bampton model, and the other for the Young’s modulus in that same block.

UNCLASSIFIED - UNLIMITED RELEASE 309

3.42 Interface Elements

The Interface Element (InterfaceElement), provides a means of connecting two mis-
matched meshes while still allowing compliance between them. The element is typically
meshed into the geometry as a flattened tetrahedron. Initial implementation is with a node
on face interaction, and with the face defined as a 6 noded triangle. Currently, only tet10
elements can be used for the element blocks on the contacting surfaces, since the interface
elements themselves are written out at tet10 elements. Later extensions to this will include
3 noded triangle faces and 4 and 8 noded quad master faces. The mortar type connection to
these faces should also be possible because the dual mortar connection does not couple the
nodes on the slave side.

The element is a collection of springs and dashpots – no material model is used. The
spring constants are described in the example below.

BLOCK 10
interfaceelement
normalstiffness 1.0
tangentialstiffness 0.1

END

where normalstiffness and tangentialstiffness denote the spring constants for
the normal and tangential springs, respectively.

The interface elements can also be used when Sierra/SD is to be run in a linear anal-
ysis (modal or transient) of a preloaded structure that has contact surfaces. The syntax
is the same as described above, except that the solution block would have multiple cases
corresponding to the preload and linear analysis, respectively. For example, a model with
nonlinear contact may be preloaded in Adagio, and the results could then be transferred to
Sierra/SD for a modal analysis. In this case, Adagio would write out the interface elements
to the results file, and this results file would be used as the incoming mesh file for Sierra/SD
. These elements would only be written to the parts of the interfaces where the contact is
active, and thus Sierra/SD would correctly account for which nodes on the surfaces are in
contact and which are not. Note that for the purposes of the linear analysis in Sierra/SD
, the stresses in the incoming interface elements are all set to zero.

3.43 Dead

A dead element has no mass and no stiffness. It may be of any dimensionality, solid,
planar, line or point. Interior nodes to a block of Dead elements will not be included in
the computation of the model. There are no parameters for Dead elements.

310

3.44 Offset Elements and Lumped Mass

Offset elements can provide a tremendous advantage in modeling some structures includ-
ing stiffened plates. Offset elements necessarily involve coupling between the rotational and
translational degrees of freedom. This results in off diagonal coupling terms in the element
stiffness and mass matrices.

Generally the element stiffness matrix is fully populated and seldom is reduced. However,
the mass matrix may be diagonalized for a number of reasons. For example, the user may
specify the “lumped” parameter in the solution section. Lumped mass matrices are always
generated when running explicit analysis.

A lumped mass matrix loses all coupling between translational and rotational degrees of
freedom. The model is changed significantly. Specifically, while the total mass is conserved
the center of gravity and mass moments are not. The mass looks as if it had not been offset.
This is true even with mesh refinement. The models of the consistent and lumped mass are
fundamentally different when element offsets are included.

UNCLASSIFIED - UNLIMITED RELEASE 311

4 Stress/Strain Recovery

Stresses and strains are recovered at the centroids of the finite elements using standard finite
element procedures. Stress and strain recovery is not implemented for 1-D elements. The
stresses/strains calculated for shell elements are calculated in element space and not global
space.

4.1 Stress/Strain Truth Table

The Exodus data format provides an element truth table. Element variables are defined
globally (for all element blocks), but output data is stored only for those blocks that have
entries in the truth table. Thus, in Sierra/SD if stress output is requested (see section
2.8.10), then stress variables are defined for solids and shells.3 Space is allocated in the
output Exodus file, and data is written only if it is applicable. Table 93 illustrates this for
stresses. A similar table can be generated for strains. Note that volume stresses always start
with “V” and surface stresses start with “S”. Note that “vonmises” is the only entry that
applies to both solids and shells.

4.2 Solid Element Stress/Strain

If stresses are requested, solid elements will output the values of stress at the element
centroid.4 The values reported are the engineering stresses in the global coordinate frame.
That is,

σij =
∑
k,l

Dijklεkl (68)

Where Dijkl is the material tangent modulus tensor, and

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

Here u and x are the displacement and coordinates in the basic coordinate frame.

4.3 Shell Element Stress/Strain

Shell elements introduce two complexities to stress/strain recovery. First, it is often
important to recover data from the virtual surfaces of the elements (where the stresses are
highest). This requires data recovery at the top, midplane and bottom surfaces. Second,

3 The variables are defined for solids and shells even if only one or the other occurs in the model
4 There is little point in reporting stresses elsewhere in the element as none of the post processing tools

currently available properly manage stresses except at the centroids.

312

Table 93: Element Stress Truth Table

Variable Element
Name Solid Shell Beam

SStressX1 σtopxx
SStressY1 σtopyy
SStressXY1 τ topxy

SvonMises1 σtopvm
SStressX2 σmidxx

SStressY2 σmidyy

SStressXY2 τmidxy

SvonMises2 σmidvm

SStressX3 σbottomxx

SStressY3 σbottomyy

SStressXY3 τ bottomxy

SvonMises3 σbottomvm

VStressX σxx
VStressY σyy
VStressZ σzz
VStressYZ σyz
VStressXZ σxz
VStressXY σxy
VonMises σvm max(σvm)
ElemForce forces

UNCLASSIFIED - UNLIMITED RELEASE 313

there are no stresses or strains normal to the surface. Thus, stresses are naturally reported
in the surface of the element. This can also introduce confusion about the inplane coordinate
frames. As shown in Figure 72, the stresses and strains are recovered in the physical space
x1, x2 coordinate frame, which has been mapped from the η1, η2 frame in element space.
Note that the direction of the x1 vector depends on the ordering of the mesh, and may vary
from element to element in the same surface mesh. The element orientation vectors can be
obtained with the eorient keyword described in section 2.8.25. The von mises stress, will
of course be independent of the element orientation vectors (as it is an invariant).

The TriaShell stress recovery is described here. The TriaShell is a shell element
created by combining Allman’s triangle44 and the DKT element.45 The stress vector for the
element is ~σ = (σx, σy, σxy)T . This can be further broken down as:

~σ = ~σat + ~σdkt (69)
where ~σat is the stress vector for Allmans’s triangle and ~σdkt is the stress vector for the DKT
element. Since Allman’s triangle represents the membrane d.o.f., i.e., (u, v, θz), the stresses
through the three surfaces of the shell element are the same. Therefore,

~σat = [D]{ε} (70)
where {ε} is the strain vector, and [D] is the elasticity matrix for Allman’s triangle. For the
DKT element,

~σdkt = z[D]{κ} (71)
where z is the coordinate direction normal to the element, with z = 0 representing the
mid-plane, [D] is the elasticity matrix for the DKT element, and

{κ} =

 βx,x
βy,y

βx,y + βy,x

 (72)

where βx and βy are rotations of the normal to the undeformed middle surface in the x-z
and y-z planes, respectively (assuming the element lies in the x-y plane). ~σdkt does vary with
the thickness of the element. Note, the above stress equations are written with respect to a
local element coordinate system as shown in Figure 72.

Combining the stress vectors from Allman’s triangle and the DKT element above yields
the stress vector for the element which is output in the local element frame.

For composite elements (such as QuadT, Quad8T and Tria6), the stresses are computed
from the underlying Tria3 element and then transformed to the element orientation of the
composite element. For the quad elements, the stress of the two central triangles is averaged.
Figures 51, 52 and 56 describe these composite elements.

4.4 Line Element Stress/Strain

Reporting stresses for line type elements (Beams, Rods, Springs, etc) is even more prob-
lematic than it is for shells. For many of these elements an axial stress could be reported.

314

Figure 72: Tria3 Stress Recovery. Stresses are output in the orthogonal x1, x2 coordinate
frame in physical space, which has been mapped from the η1, η2 frame in element space.

HH
HHH

HHH
HHH

HHHHv v

v
��

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
��

f

ff

B
B
B
B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

-
η1

6

η2

��
��

��
�1

x1

B
B
B
BBM

x2

element
triangle

physical
triangle

But, for beam elements that stress could not include the effects of beam bending unless
details of the beam cross section were available. For some elements (such as a spring) no
concept of stress is even correct. As a consequence, we do not report stresses for line type
elements. Some recovery may be obtained using the element force output (see section 2.8.21).

UNCLASSIFIED - UNLIMITED RELEASE 315

5 Troubleshooting

A variety of issues can cause an analysis to fail. Clearly, there are still bugs in the
Sierra/SD software, and these will continue to be found. However, most problems are
identified with problems in the model or other input to the software. This section may help
to identify these issues with the goal of completing the analysis properly. Typically the
fastest resolution to a problem is to try to eliminate the modeling issues, and only then treat
the problem as a potential bug.

Users can troubleshoot Sierra/SD issues through stand-alone tools or using Sierra/SD
capabilities. The following sections will describe some of the ways this may be done. The
first part describes the stand-alone tools . The second part describes the ways of using
Sierra/SD capabilities to troubleshoot problems or issues.

5.1 Stand-Alone Tools

Currently, two tools exist which can help the user debug their mesh file, i.e., Exodus file:
Grope and Cubit.

5.1.1 Grope

Grope is an ACCESS/SEACAS utility that can be used to interrogate the Exodus file.
One of the commands in Grope that can be used is check. It is used as follows:

prompt> grope cube.exo
.
.
GROPE> check

Database check is completed

GROPE>

If there are any warning or errors, they will appear before the Database check is com-
pleted message.

5.1.2 Cubit

The Cubit team has developed a GUI-based tool named Cubit. Cubit can be used to
look at various mesh quality parameters of the Exodus file. For questions about Cubit,

316

please contact the Cubit team at cubit-dev@sandia.gov.

5.2 Using Yada to identify disconnected regions

A common problem with many models is that part of the structure may be improperly
connected to other components. Sierra/SD is particularly sensitive to issues of this type
because they can cause computational issues for many linear solvers when the model is
decomposed. Section 5.3.4 discusses this a little more.

The decomposition tool, yada, can be used to identify the problem areas. Please recog-
nize that yada has a very specific definition for a “connected” mesh. That definition requires
that elements be connected so as to eliminate rigid bodies. Figure 73 provides a simple
example. While yada is designed to decompose a model, part of that task is identification of
potential problem regions.

The steps for identification of these “disconnected” regions follow.

1. Run yada and attempt to split the model into only 1 region.
mpirun yada example.exo 1

2. If yada finds no disconnected regions, you are done. Typically some regions may be
found.

3. Use nem_spread to spread the exodus file into pieces. See section 3.5. The result is a
number of exodus files, where each contains a fully “connected” region.

4. Alternatively, you can use color_domains to generate an exodus file with the domain
number as an output variable. Standard visualization tools can be used to examine
portions of the model.
unix> color_domains example.exo example.nem example-colors.exo
unix> ensight example-colors.exo

5. Examine each of the spread to understand the connectivity issue.

5.3 Using Sierra/SD To Troubleshoot

When running Sierra/SD on a parallel platform, new users will most likely face issues
they are not accustomed to. One of the issues will be in choosing the correct FETI section
parameters. Section 5.4 can help the user identify and troubleshoot the FETI parameters.

The user has to take additional steps before executing the parallel version of Sierra/SD.
One of the steps is to run nem_slice or yada to decompose the finite element model.

UNCLASSIFIED - UNLIMITED RELEASE 317

2

1

3

4

Figure 73: Problem Decomposition. The 3 hex elements on the left are properly connected.
However, element 4 is connected only along an element edge. A mechanism is possible.

This will produce a load balancing file with a “.nem” extension. Using the Exodus file
and the load balancing file, the next step is to run nem_spread to create the partitioned
files on the parallel platform where Sierra/SD will be executed. Finally, the commands
needed to run Sierra/SD on the parallel platform need to be learned so that execution of
Sierra/SD can begin. Many of these steps can cause frustration to the user, but problems
with any of these steps are often easily addressed.

The FETI solver is one of the most advanced solvers in the world, but it also is sensitive
to the decompositions created. Therefore, a model that might appear to be working in serial
can fail in parallel due to decomposition issues. Sometimes, the problem can be the model
itself, e.g., a model that has been improperly equivalenced.

Sierra/SD developers have added various capabilities into Sierra/SD to help trou-
bleshoot various issues.

5.3.1 Modal Analysis

There are a few things not to forget to try if the eigen solution method (discussed in
section 2.1.10) diverges.

Section 2.3 mentions the eig_tol parameter. The default value is about 10−16. Adequate
modes can be determined with much larger values of eig_tol. Values such as 10−8 are
reasonable.

The modal analysis algorithm depends on a linear solver, and assumes that the linear
systems are solved accurately. Almost all of the iterative linear solver (GDSW, FETI,...)
parameters trade off between speed and accuracy. For example, a very small value of the

318

solver_tol.

At times an analyst may choose to use the eigen method to diagnose a hidden problem.
This can be done by using as large a value of eig_tol as is needed. The number of modes
would also be as small as needed. After the hidden issue is resolved, if eigenvectors are still
needed, don’t forget to reset eig_tol to a small value.

5.3.2 Evaluating Memory Use

The Sierra/SD software tends to use a lot of memory. Matrices are generated and
solved, and while this is often the fastest method of solution, it results in large memory
demands. Parallel computing has its own issues for memory use.

Memory use diagnostics can be requested in the “ECHO” section of the input (see section
2.7).

5.3.3 Using The Node_List_File For Debugging Subdomains With RBMs

The node_list_file option is very useful in debugging subdomains that have ZEMs (or
RBMs)5. To use this feature for debugging,

1. Make sureprt_debug 3 is set in theFETI section. This will produce a corner.data
file.

2. The “corner.data” file has the following format:

NumCorners
global_id local_id subdomain_id x_coord y_coord z_coord
.
.

3. Use awk (or similar utility) to obtain the local_ids of the subdomain from corner.data

4. Make sure to add an offset of 1 to the local_ids. Put these ids in a file, e.g., sub.corners.

5. Change the Boundary section of the Sierra/SD input file to include node_list_file:

Boundary
node_list_file="sub.corners"

fixed
End

6. Change the geometry_file to point to the subdomain being investigated.
5Zero Energy or Rigid Body modes

UNCLASSIFIED - UNLIMITED RELEASE 319

7. Run serial Sierra/SD using the parallel input file

This will help in debugging subdomains that are problematic.

5.3.4 Identifying Problematic Subdomains

Sometimes it is very difficult to identify subdomains that might be problematic. When
running an eigen solution (in parallel), a shift is usually specified. Though the shift helps
obtain solutions when global rigid body modes exist, this shift can also hide problematic sub-
domains. This issue also arises when running transient analysis. If a problematic subdomain
is suspected, try an eigen analysis with a shift of zero. This will help identify subdomains
with ZEMs. If ZEMs are discovered, then section 5.3.3 can help evaluate the source of the
ZEMs on that subdomain using a serial version of Sierra/SD.

Sometimes bad subdomains can exist if the global model is not well connected. It is
possible to use yada to try and create a one processor decomposition of the global Exodus
file. If yada finds what appears to be disconnected pieces, it will add one processor for each
disconnect piece. Once execution is complete, the color_domains utility can be used to
create an Exodus file for visualization that will have the processor id as an element variable.
Or, simply run nem_spread on the new decomposition and visualize each subdomain
individually.

5.3.5 Problematic Elements and Connectivity

Many problems are caused by “bad” elements. Following are a few issues that come up
periodically.

Rotational Invariance can be lost for certain elements such as springs if they are not of
zero length. The spring shown in Figure 74 is invariant to rotation about the x axis,
but not invariant to rotation about y or z. If we consider an undeformed rotation
about the center of the beam along the z axis we would find that uy(1) < 0 and
uy(2) = −uy(1). If the spring has KY 6= 0, then this undeformed rotation actually
results in strain energy, E = 2KY u

2
y. Thus, the rigid body rotation is no longer a zero

energy mode.
This is important for a variety of line type elements including spring, joint2g and gap
elements.

Bad element shape is a major source of problems. For example, we have examined models
that have “triangles” where one side is 1/200th the length of the other sides. This
produces extremely poor element matrices. In some cases this can destroy the condition
of the entire system. Such elements can sometimes be found using the kdiag output
option described in section 2.8.32.

320

Figure 74: Single Spring element

x

y v v1 2

Decomposition weakness is an issue for trusses (or rods) and some other elements. The
truss in the top part of Figure 75 is self sustaining when made of truss elements.
However, because truss elements have no rotational stiffness, the decomposed model
in the lower part of the figure contains mechanisms. Note that there is no way to
decompose the model without introducing such mechanisms.

Figure 75: Truss Decomposition Issues

s c c
s c c
@
@
@
@

@
@
@
@

complete truss

s c
s c
@
@
@
@ c c

c c
@
@
@
@

decomposed model

This does not mean that truss elements must not be used in Sierra/SD . There are
times when they are the correct element to use. However, extreme care must be taken
in their decomposition, and occasionally extra “corner nodes” may be needed to avoid
mechanisms (see section 2.4.1).

Poor Connectivity A structure that has poorly connected regions can be very difficult to
analyze. If elements have not been properly equivalenced, there can be thousands of
zero energy modes in the model. Sierra/SD is fairly good at identifying up to a few
dozen redundant modes in the best of cases.

UNCLASSIFIED - UNLIMITED RELEASE 321

5.4 Troubleshooting FETI Issues

5.4.1 Introduction

The Finite Element Tearing and Interconnecting (FETI) solver achieves unprecedented
speed and scalability on massively parallel computers. However, it is significantly more
complex than a standard direct solver. We discuss a number of the options associated with
the solver in the following sections. These options are required to achieve three sometimes-
competing goals.

1. Insuring that there is sufficient memory to run on the MP platform.

2. Obtaining the current solution through correct rigid body (or zero energy) identification
on the subdomain and on the coarse grid.

3. Tuning the solver to maximize performance.

5.4.2 Standard FETI Block

The default entries for the FETI block are shown below.

FETI
rbm geometric
preconditioner dirichlet
corner_algorithm 1
corner_dimensionality 6
corner_augmentation none
max_iter 200
orthog 1000
solver_tol 1e-6
grbm_tol 1e-6
coarse_solver sparse
local_solver sparse
precondition_solver sparse
prt_summary yes
prt_rbm yes
prt_debug 2

END

5.4.3 Memory

The FETI options that directly affect memory usage are listed in the following table.
Memory is directly related to the “size” of a subdomain. The number of elements associated

322

with a subdomain can approximately measure the “size”. The topology or connectivity of
those elements also directly affects the memory since this determines the local sparse matrix
structure.

Large memory allocations occur in the following order with the relative importance listed
in parentheses. These operations are only done once for linear static/dynamic and eigen
analysis in Sierra/SD.

1. Preconditioner (3)
2. Local Solver (2)
3. Coarse Grid (1)
4. Orthog vectors (4)

5.4.3.1 Preconditioner The lumped preconditioner requires less memory but generally
does more iterations than the dirichlet preconditioner which requires more memory. The
precondition_solver option only affects the memory if the Dirichlet preconditioner is
selected. Then the comments in the Local Solver section also apply.

5.4.3.2 Local Solver The skyline solver typically takes more memory than the sparse
solver. For small problems (less than 1000 equations), the skyline solver may require less
memory than the sparse solver. Generally the skyline solver is the more robust option par-
ticularly when the solution may be singular (i.e. eigenvalue analysis on a floating structure).

5.4.3.3 Coarse Solver The corner algorithm, corner dimensionality, corner augmenta-
tion, and coarse solver options affect the coarse grid memory requirements. The number of
equations in the coarse grid can be found in the solution.data file. Reducing the number of
equations in the coarse grid reduces the memory required by the coarse grid.

If your model has shell elements, then corner dimensionality 6 results in more memory
than corner dimensionality 3. If your model does not have shells, then this option will not
affect memory. Corner dimensionality 6 is generally required for good performance on shell
models.

Corner algorithm memory requirements are model dependent and are directly related to
the interface topology of the decomposed global model. Typically, algorithm 0 results in
the smallest coarse grids. This is also the least robust corner algorithm. Corner algorithm
3 is the most conservative corner algorithm and typically generates larger coarse grids. It
is recommended to start with corner_algorithm=1. If problems arise, change to corner
algorithm 3.

Both the skyline and sparse coarse grid solvers are redundantly stored on every processor.
The same comments about the skyline and sparse solvers found in the Local Solver section ap-
ply here too. The parallel sparse (psparse) solver distributes the coarse grid memory among

UNCLASSIFIED - UNLIMITED RELEASE 323

Ns coarse solver processors. Very large coarse grids can be used with this option. If there are
any problems found with the parallel sparse solver, please contact me at khpiers@sandia.gov.

5.4.3.4 Orthogonalization (Ortho) Vectors The number of ortho vectors directly
affects the memory requirements of FETI-DP. Generally, you want to select as many ortho
vectors as possible given the memory limitations. Ortho vectors decrease the number of
iterations required for successive right hand side vectors (eigen/dynamic analysis).

Memory Diagnostics

On most platforms, diagnostics on the memory usage can be obtained using the
prt_debug keyword. If prt_debug is greater than 2, then a memory diagnostics file,
memory.data is written from which one may determine the memory statistics on multiple
processors. Unfortunately, not all platforms currently support memory diagnostics. On
those platforms, memory.data will have no meaningful information.

Options that Affect Memory

FETI
preconditioner [lumped/dirichlet]
precondition_solver [skyline/sparse]
orthog 200
local_solver [skyline/sparse]
coarse_solver [skyline/sparse/psparse]
corner_dimensionality [3/6]
corner_algorithm [0,1,2,3,4]
corner_augmentation [none/subdomain/edge]
prt_debug=3 // set 2 or higher for diagnostics

END

5.4.4 Local Rigid Body Modes

Local rigid body modes (RBMs) refer to the local subdomain stiffness matrix having
singularities found during the LDLT factorization and in general the solution will be cor-
rupted if local RBMs are found. The command “prt_rbm yes” in the FETI block will print
the number of local RBMs found for each subdomain in your model. Each subdomain is
expected to have zero local RBMs. The following steps can be taken if you find a subdomain
with a non-zero number of local RBMs.

324

1. Reduce the tolerance used in the LDLT factorization, For example, the default value
for “rbm_tol_mech” is 1.0E-08, then try “rbm_tol_mech 1.0E-12”

2. If this does not remove the local RBMs, then try changing the corner algorithm while
holding the previously set tolerance constant. The recommended and default algorithm
is 1. If corner algorithm 1 fails to remove the local RBMs, then try corner algorithm
3.

3. If you have shell elements in the model (and more specifically in the subdomain you
have found local RBMs), then “corner dimensionality 6” may be required.

4. For more detailed debugging of RBMs (or ZEMs) for specific subdomains, see section
5.3.3.

5. If you still have local RBMs, contact me at khpiers@sandia.gov and I’ll be happy to
look at your specific problem.

5.4.5 Global Rigid Body Modes

Global rigid body modes (RBMs) refer to the global stiffness matrix having singularities
present. Finding 6 RBMs for a 3D model is expected when performing an eigen analysis
with Sierra/SD and the global model does not have any prescribed displacement boundary
conditions. FETI-DP can handle this case, but in many cases tolerances have to be adjusted
for a particular model.

Finding the incorrect number of RBMs can lead to either stagnation in the FETI solution
or the dreaded “relative residual greater than 1” error in Sierra/SD. Troubleshooting this
problem can be done in the following fashion.

1. First, determine the expected number of RBMs in your model. Typically in eigen
analysis, this is zero (fully constrained), three (2D-floating), or six (3D-floating). The
number of RBMs is expected to be zero for transient dynamics.

2. Next, determine how many you are finding with the FETI parameters you have selected.
The number of global RBMs are printed to the screen during a Sierra/SD run and
printed to the solution.data file. Executing the following UNIX command will find the
number of global RBMs found during the last Sierra/SD run. grep “Global RBM”
solution.data

3. The parameter “grbm_tol 1.0E-06” will have to be adjusted to find the expected
number of RBMs in your model.

4. Decrease grbm_tol if you want to find less global RBMs.

5. Increase grbm_tol if you want to find more global RBMs.

UNCLASSIFIED - UNLIMITED RELEASE 325

6. For eigen analysis, you may want to use a negative shift (in the Sierra/SD SOLUTION
block). Use a shift value equal to the negative of the first anticipated flexible eigenvalue,
i.e. (2πf)2. This should eliminate all global RBMs, but may slow the solution.

7. If you still have problems with global RBMs, please contact Kendall Pierson at
khpiers@sandia.gov, and I will be happy to help resolve the problem.

326

6 Acknowledgments

Sierra/SD is a success based on work by many individuals and teams. These include the
following.

1. The ASCI program at the DOE which funded its development.

2. Line managers at Sandia Labs who supported this effort. Special recognition is ex-
tended to David Martinez who helped establish the effort.

3. Charbel Farhat and the University of Colorado at Boulder. They have provided in-
credible support in the area of finite elements, and especially in development of FETI.

4. Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and
includes the summer of 2001 where he visited at Sandia and developed the HexShell
element for us.

5. Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used
extensively for eigen analysis.

6. Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for
much of the performance in Sierra/SD and in FETI.

7. The metis team at the university of Minnesota. Metis is an important part of the
graph partitioning schemes used by several of our linear solvers. These are copyright
1997 from the University of Minnesota. Documentation is available at,
http://www-users.cs.umn.edu/ karypis/metis/metis/index.html.

8. Padma Raghaven for development of a parallel direct solver that is a part of the FETI
solver.

9. The developers of the SuperLU package. This is used in a variety of areas, including a
sparse direct complex solver. More information can be obtained at,
http://www.nersc.gov/ xiaoye/SuperLU.

http://www-users.cs.umn.edu/~karypis/metis/metis/index.html
http://www.nersc.gov/~xiaoye/SuperLU

References

[1] Sjaardema, G. D., “APREPRO: An Algebraic Preprocessor for Parameterizing Finite
Element Analyses,” Tech. Rep. SAND92-2291, Sandia National Laboratories, 1992.

[2] Schoof, L. A. and Yarberry, V. R., “EXODUS II: A Finite Element Data Model,” Tech.
Rep. SAND92-2137, Sandia National Laboratories, 1994.

[3] Johnson, C. D., Kienholz, D. A., and Rogers, L. C., “Finite element prediction of
damping in beams with constrained viscoelastic layers,” AIAA Journal, vol. 20, no. 9,
1982, pp. 1284–1290.

[4] Avery, P., Farhat, C., and Reese, G., “Fast Frequency Sweep Computations Using a
Multi-point Pade-Based Reconstruction Method and an Efficient Krylov Solver,” Int.
J. Numer. Meth. Engng., vol. 69, no. 13, Sept 2006, pp. 2848–2875.

[5] Lehoucq, R. B., Sorensen, D., and Yang, C., ARPACK Users’ Guide, SIAM, Philadel-
phia, PA, USA, 1998.

[6] Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., and Thornquist, H. K., “Anasazi
Software for the Numerical Solution of Large-Scale Eigenvalue Problems,” ACM Trans-
actions on Mathematical Software, vol. 36, no. 3, 2009, pp. 13:1–13:23.

[7] Stewart, G. W., “A Krylov–Schur Algorithm for Large Eigenproblems,” SIAM J. Matrix
Anal. Applic., vol. 23, no. 3, 2002, pp. 601–614.

[8] Arbenz, P., Hetmaniuk, U. L., Lehoucq, R. B., and Tuminaro, R. S., “A comparison
of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative
methods,” Int. J. Numer. Meth. Engng., vol. 64, no. 2, 2005, pp. 204–236.

[9] Knyazev, A. V., “Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method,” SIAM J. Sci. Comp., vol. 23,
no. 2, 2001, pp. 517–541.

[10] Hetmaniuk, U. and Lehoucq, R., “Basis selection in LOBPCG,” Journal of Computa-
tional Physics, vol. 218, no. 1, October 2006, pp. 324–332.

[11] Wirsching, P. H. and Light, M. C., “Fatigue under wide band random stresses,” Journal
of the Structural Division, ASCE , vol. 106, no. 7, 1980, pp. 1593–1607.

[12] Wirsching, P. H., Paez, T. L., and Ortiz, K., Random Vibrations, theory and practice,
John Wiley and Sons, Inc, 1995.

327

[13] Reese, G., Field, R., and Segalman, D. J., “A Tutorial on Design Analysis Using von
Mises Stress in Random Vibration Environments,” Shock and Vibration. Digest, vol. 32,
no. 6, 2000.

[14] Segalman, D., Reese, G., Field, R., and Fulcher, C., “Estimating the Probability Distri-
bution of von Mises Stress for Structures Undergoing Random Excitation,” Transactions
of the ASME , vol. 122, January 2000.

[15] Kinsler, Frey, Coppens, and Sanders, Fundamentals of Acoustics, John Wiley & Sons,
1982.

[16] Farhat, C., Crivelli, and Géradin, M., “Implicit time integration of a class of constrained
hybrid formulations - Part I: Spectral stability theory,” Int. J. Numer. Meth. Engng.,
vol. 41, 1998, pp. 675–696.

[17] Chung, J. and Hulbert, G., “A Time Integration Algorithm for Structural Dynamics
with Improved Numerical Dissipation: The Generalized alpha method,” Journal of
Applied Mechanics, vol. 60, 1993, pp. 371–375.

[18] S D Team, “Sierra Structural Dynamics Verification,” Tech. Rep. SAND2011-7898P,
Sandia National Laboratories, 2011.

[19] Dohrmann, C. R., “A study of two domain decomposition preconditioners,” Tech. rep.,
Sandia National Laboratories, SAND2003-4391, Albuquerque, New Mexico, 2003.

[20] Dohrmann, C. R. and Widlund, O. B., “Hybrid domain decomposition algorithms
for compressible and almost incompressible elasticity,” Int. J. Numer. Meth. Engng.,
vol. 82, 2010, pp. 157–183.

[21] Farhat, C. and Roux, F.-X., “A Method of Finite Element Tearing and Interconnecting
and Its Parallel Solution Algorithm,” Int. J. Numer. Meth. Engng., vol. 32, 1991,
pp. 1205–1227.

[22] Cook, R. D. and D. S. Malkaus, M. E. P., Concepts and Applications of Finite Element
Analysis, John Wiley & Sons, third edn., 1989.

[23] Puso, M. A., “A 3D Mortar Method for Solid Mechanics,” Int. J. Numer. Meth. Engng.,
vol. 59, 2004, pp. 315–336.

[24] Knupp, P. M., “Achieving Finite Element Mesh Quality Via Optimization of the Ja-
cobian Matrix Norm and Associated Quantities : Part II - A Framework for Volume
Mesh Optimization and the Condition Number of the Jacobian Matrix,” Tech. Rep.
SAND99-0709J, Sandia National Laboratories, 1998.

[25] Thompson, D., Pébay, P. P., and Jortner, J. N., “An Exodus II Specification for Han-
dling Gauss Points,” Tech. Rep. SAND2007-7169, Sandia National Laboratories, 2007.

[26] S D Team, “Sierra Structural Dynamics How To,” 2000.

328

[27] S D Team, “SALINAS Program Notes,” Tech. Rep. SAND2008-2559P, Sandia National
Laboratories, 2008.

[28] Reese, G., Bhardwaj, M., and Walsh, T., “Sierra Structural Dynamics - Theory Man-
ual,” Technical Report SAND2009-0748, Sandia National Laboratory, PO Box 5800,
Albuquerque, NM 87185-5800, April 2011.

[29] Walsh, T. F., Reese, G. M., Dohrmann, C., and Rouse, J., “Finite element methods
for structural acoustics on mismatched meshes,” Journal of Computational Acoustics,
vol. 17, no. 3, 2009, pp. 247–275.

[30] Brown, K. and Voth, T., “ACME: Algorithms for Contact in a Multiphysics Environ-
ment, API Version 1.3,” SAND Report 2003-1470, Sandia National Laboratories, 2003.

[31] Aklonis, J. L. and MacKnight, W. L., Introduction to Polymer Viscoelasticity, Wiley,
1983.

[32] Ferry, J. D., Viscoelastic Properties of Polymers, Wiley, 1980.

[33] Hamilton, M. F. and D. T. Blackstock, E., Nonlinear Acoustics, Academic Press, 1998.

[34] Carroll, S. K., Drake, R. R., Hensinger, D. H., Luchini, C. B., Petney, S. J. V., Robbins,
J. H., Robinson, A. C., Summers, R. M., Voth, T. E., Wong, M. K. W., Brunner, T. A.,
Garasi, C. J., Haill, T. A., and Mehlhorn, T. A., “ALEGRA: Version 4.6,” Tech. Rep.
SAND2004-6541, Sandia National Laboratories, 2004.

[35] Engineering, A., “Attune User’s Guide,” .

[36] Alvin, K. F., Reese, G. M., Day, D. M., and Bhardwaj, M. K., “Incorporation of Sen-
sitivity Analysis into a Scalable, Massively Paralle, Structural Dynamics FEM Code,”
Boulder, CO, August 1999.

[37] Alvin, K. F., “Implementation of Modal Damping in a Direct Implicit Transient Algo-
rithm,” April 2001.

[38] Taylor, R. L., Beresford, P. J., and Wilson, E. L., “A Non-conforming Element for Stress
Analysis,” Int. J. Numer. Meth. Engng., vol. 10, 1976, pp. 1211–1219.

[39] Ibrahimbegovic, A. and Wilson, E. L., “A Modified Method of Incompatible Modes,”
Communications in Applied Numerical Methods, vol. 7, 1991, pp. 187–194.

[40] MacNeal, R. H., Finite Elements: Their Design and Performance, Marcel Dekker, 1994.

[41] Reddy, J. N., An Introduction to the Finite Element Method, McGraw Hill, 1984.

[42] Ochoa, O. O. and Reddy, J. N., Finite Element Analysis of Composite Laminates,
Kluwer Academic Publishers, 1992.

[43] Belytschko, T., Tsay, C., and Liu, W., “A stabilization matrix for the bilinear Mindlin
plate element,” Computer methods in applied mechanics and engineering, vol. 29, no. 3,
1981, pp. 313–327.

329

330

[44] Allman, D. J., “A Compatible Triangular Element Including Vertex Rotations for Plane
Elasticity Problems,” Computers and Structures, vol. 19, no. 1-2, 1996, pp. 1–8.

[45] Batoz, J.-L., Bathe, K.-J., and Ho, L.-W., “A Study of Three-Node Triangular Plate
Bending Elements,” Int. J. Numer. Meth. Engng., vol. 15, 1980, pp. 1771–1812.

[46] Felippa, C. A., “The SS8 Solid-Shell Element: Formulation and a Mathematica Imple-
mentation,” Tech. Rep. CU-CAS-02-03, Univ. Colo. at Boulder, 2002.

[47] Oden, J. T., Mechanics of Elastic Structures, McGraw-Hill, Inc., first edn., 1967.

[48] Smallwood, D. O., Gregory, D. L., and Coleman, R. G., “A three parameter constitutive
model for a joint which exhibits a power law relationship between energy loss and relative
displacement,” in Shock and Vibration Symposium, Destin, FL, 2001.

[49] Segalman, D. J., “An Initial Overview of Iwan Modeling for Mechanical Joints,” Tech.
Rep. SAND2001-0811, Sandia National Laboratories, 2001.

[50] Segalman, D. J. and Starr, M. J., “Relationships Among Certain Joint Constitutuve
Models,” Tech. Rep. SAND2004-4321, Sandia National Laboratories, 2004.

[51] Smallwood, D. O., Gregory, D. L., and Coleman, R. G., “A three parameter constitutive
model for a joint which exhibits a power law relationship between energy loss and relative
displacement,” Tech. Rep. SAND2001-1758C, Sandia National Laboratories, November
2001.

UNCLASSIFIED - UNLIMITED RELEASE 331

1 Sierra/SD Example Input Files

The following sections give examples of Sierra/SD input files. Note, case sensitivity of the
keywords is ignored unless in quotes. The exception is the #include command, where
the filename following the command must not be in quotes, but case sensitivity is preserved.

1.1 An Eigenanalysis Input File

The following input file will output the first four mode shapes to an Exodus output file
name hexplate-out.exo. A results file, hexplate.rslt, will not be created since no results have
been selected for output in the ECHO section.

SOLUTION
eigen
nmodes 4
title ’Obtain First Four Mode Shapes For Hexplate’

END

// The f.e.m. is in hexplate.exo
FILE

geometry_file ’hexplate.exo’
END

BOUNDARY
nodeset 77

fixed
END

LOADS // loads are unnecessary for eigenanalysis
END

// Only deformations will be output
OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain
END

// No results are output to the text log file, *.rslt

332

ECHO
// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
none

END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default hex is an underintegraged hex.
BLOCK 44

material 3
hex8

END

MATERIAL 3
name "steel"
E 30e6 +/- 1 %
nu .3
density 0.288

END

SENSITIVITY
values all

END

1.2 An Anisotropic Material Input File

The following input file is an example of a hexahedral mesh with anisotropic properties.

UNCLASSIFIED - UNLIMITED RELEASE 333

SOLUTION
eigen
title ’Example of anisotropic format’

END

FILE
geometry_file ’anisogump.exo’

END

boundary
nodeset 4 y = 0
nodeset 5 x = 0
nodeset 6 z = 0

end

loads
// sum of forces on surface should be equal to area
// imposed forces are additive
nodeset 1 force = 0.0 0.083333 0.0
nodeset 2 force = 0.0 -0.041666 0.0
nodeset 3 force = 0.0 -0.020833 0.0

end

OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain
END

ECHO
// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP

334

// STRAIN
// STRESS
// MFILE
none
END

// the following element block is all hex
BLOCK 1

hex8
material 1

END

MATERIAL 1
name "anisotropic gump"
anisotropic
Cij
1.346 0.5769 0.5769 0 0 0

1.346 0.5769 0 0 0
1.346 0 0 0

0.3846 0 0
0.3846 0

0.3846
density 1

END

1.3 A Multi-material Input File

The next example shows the input for an Exodus model with many element blocks and
materials. Keyword lumped in the SOLUTION section causes Sierra/SD to use a
lumped mass matrix instead of a consistent mass matrix.

SOLUTION
eigen
nmodes 1
title ’Multiple block, multiple material example’
lumped

END

FILE
geometry_file ’multi.exo’

END

UNCLASSIFIED - UNLIMITED RELEASE 335

BOUNDARY
nodeset 1
fixed
nodeset 3
x = 0
y = 0
z = 0
RotY = 0
RotZ = 0

END

OUTPUTS // output only displacements to exodus file
deform

END

ECHO
none

END

// element block specifications. One such definition per element
// block in the exodus (genesis) database.
BLOCK 1

material 2
Beam2

END

BLOCK 101
integration full
wedge6
MATERIAL 1

END

BLOCK 2
material 2

END

BLOCK 102
integration full
wedge6
MATERIAL 2

END

BLOCK 3
material 3

336

END

BLOCK 103
integration full
wedge6
MATERIAL 3

END

BLOCK 4
material 4

END

BLOCK 104
integration full
wedge6
MATERIAL 4

END

BLOCK 5
material 5

END

BLOCK 105
wedge6
integration full
MATERIAL 5

END

BLOCK 6
material 6

END

BLOCK 106
wedge6
integration full
MATERIAL 6

END

// material specifications. Extra materials are acceptable, but
// every material referenced in a necessary "Block" definition,
// must be included here.
MATERIAL 1

name "Phenolic"
E 10.5E5
nu .3

UNCLASSIFIED - UNLIMITED RELEASE 337

density 129.5e-6
END

Material 2
name ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6

END

Material 3
name ’foam’
E 100.
nu 0.3
density 18.13e-6

END

Material 4
name ’HE’
E 5E5
nu 0.45
density 129.5e-6

END

material 5
name ’Uranium’
E 30e6
nu 0.3
density 1768.97e-6

end

material 6
name ’wood’
E 200.e3
nu .3
density 77.7e-6

end

338

1.4 A Modaltransient Input File

The next example shows the input for a modaltransient analysis. Accelerations are
output to an Exodus file bar-out.exo. This example has damping, polynomial and linear
functions. Also, sensitivities are calculated.

SOLUTION
modaltransient

nmodes 10
time_step .000005
nsteps 100
nskip 1
title ’Test modal transient on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1

fixed
END

DAMPING
gamma 0.001

END

BLOCK 1
material 1

END

MATERIAL 1
name "aluminum"
E 10e6
nu .33

UNCLASSIFIED - UNLIMITED RELEASE 339

density 2.59e-4
END

LOADS
nodeset 3

force = 1. 1. 1.
function = 3

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 0.0001 1.0
data 0.0001 0.0
data 1.0 0.0

END

340

1.5 A Modalfrf Input File

The next example shows the input for a modalfrf analysis. Accelerations are output to
an Exodus file bar-out.frq.

SOLUTION
modalfrf

nmodes 10
title ’Test modalfrf on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

frequency
freq_min 0
freq_step=10
freq_max=3000
nodeset 3
disp

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1

fixed
END

DAMPING
gamma 0.001

END

BLOCK 1
material 1

END

UNCLASSIFIED - UNLIMITED RELEASE 341

MATERIAL 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

END

LOADS
nodeset 3

force = 1. 1. 1.
function = 3

END

FUNCTION 2
// this is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945

type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 10000. 1.0

END

342

1.6 A Directfrf Input File

The next example shows the input for a directfrf analysis. Displacements are output to
an Exodus file bar-out.frq.

SOLUTION
directfrf
END

Frequency
freq_min = 1000.0
freq_step = 7000
freq_max = 5.0e4
disp
block 1

End

FILE
geometry_file ’bar.exo’

END

OUTPUTS
disp
END

ECHO
//
none
END

BOUNDARY
nodeset 1

fixed
END

BLOCK 1
material 1

END

MATERIAL 1
name "aluminum"
G 0.8E+9
K 4.8E+9

UNCLASSIFIED - UNLIMITED RELEASE 343

density 2.59e-4
END

LOADS
sideset 1
pressure = -1.0
function=3

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 10000. 1.0

END

344

1.7 A Statics Input File

The following example is a statics analysis which will output stresses to the Exodus
output file quadt-out.exo.

SOLUTION
statics
title ’10x1 beam of quadt’

END

FILE
geometry_file ’quadt.exo’

END

BOUNDARY
nodeset 1
fixed

END

LOADS
nodeset 2
force = 1000.0 1000.0 0.0

END

OUTPUTS
stress

END

ECHO
none

END

// the following element block is quadt
BLOCK 1

material 1
QuadT

END

MATERIAL 1
name "steel"
E 30.0e6
nu 0.25e0
density 0.7324e-3

END

UNCLASSIFIED - UNLIMITED RELEASE 345

2 Running Sierra/SD on serial UNIX platforms

On serial Unix platforms, Sierra/SD is run with a single argument, the ASCII input
file.

salinas example.inp

The log file will be written to example.rslt if outputs have been specified in the ECHO
section. If outputs have been specified in the OUTPUTS section, a new exodus file will be
generated. The file name is derived from the geometry_file specified in the ASCII input
(see section 2.11).

This page intentionally left blank.

UNCLASSIFIED - UNLIMITED RELEASE 347

3 Running Sierra/SD in Parallel

This section provides an example of how to perform a parallel analysis on a multiprocessor
machine. There are a variety of architectures available, and unfortunately the commands
differ from platform to platform. Please refer to the high performance computing website
https://computing.sandia.gov for information regarding running on various platforms. There
is some overhead to running in parallel versus serial. Assuming a Sierra/SD text input file
exists and an Exodus file exists which contains the finite element model, the following steps
are needed.

1. Decide on how many processors, nproc, are needed.

2. Generate a load balance file by partitioning the exodus geometry using yada.6 The
partitioning software can be executed on a workstation to create a load balance file.
This file usually has a .nem extension.

3. Create your work space on the parallel machine. It is important that this work space
be mounted by all the processors in the run, and that it be a fast disk system. Note
that /tmp is usually local to each processor on distributed machines, and is therefore
not a viable location for your data.

4. Move the Sierra/SD input file, Exodus file, and load balance file to your work space
on the parallel machine.

5. Create an input file for nem_spread. Execution of nem_spread (on the parallel
machine) with this input will create nproc Exodus files from the master Exodus file
and move them to the locations specified in the nem_spread input file. On many
platforms you may use the fastspread script to do this.

6. Modify the FILE section of the Sierra/SD input file to agree with the number
of RAID disks available and the location of the subdomain Exodus files created by
nem_spread.7

7. Use the appropriate command to run Sierra/SD in parallel. You may need to also
run in a queue. See https://computing.sandia.gov for information on platform specific
commands.

8. Use epu or create an input file for nem_join to join your results back into one
Exodus output file.

Each step is detailed in the following paragraphs.
6 In the past, nem_slice was used for this partitioning, but it is no longer recommended.
7RAID - Redundant Array of Inexpensive (or Independent) Disks. These are very important to the

performance of a parallel computer. On most platforms the numraid should be 1.

https://computing.sandia.gov
https://computing.sandia.gov

348

3.1 Number of Processors Needed

Running Sierra/SD in parallel requires the user to specify how many processors at a min-
imum are needed in order to “fit” the problem into available memory on your platform.
First, determine approximately how many degrees of freedom (d.o.f.) are in the model.
Then, Table 1 can be used to determine the number of processors needed.

mem/core dofs per core Num Cores Needed
1GB 15,000 dofs/15, 000
2GB 30,000 dofs/30, 000
4GB 50,000 dofs/50, 000
8GB 70,000 dofs/70, 000
16GB 90,000 dofs/90, 000

Table 1: Determining Number Of Processors Needed

The selection of the number of processors is only a guess. Optimal solutions would use
nearly all the available memory on a compute node. However, it is annoyingly hard to get
that right. The best measure found to date is the total number of degrees of freedom, but
that measure can be significantly in error. Memory use depends on a variety of factors
including the element type used, the solution strategy and even the output processing. The
numbers in the table are generally conservative. Fortunately, in most cases it is not that
critical unless the available memory on a compute node is exceeded.8

Please note that on machines with multiple cores per node, it is often better to run
Sierra/SD with less than the maximum number of cores available per node. The reason is
that when you request fewer cores, each core essentially gets more memory assigned to it.

3.2 Use “yada” to load balance the model

Sierra/SD must have data partitioned so an element-by-element computation may be
performed on each processor. This approach results in scalable parallel algorithms. The“load
balance” file contains the requisite information about which elements belong on which pro-
cessors (or subdomains). The load balance file is generated by yada. For example,

workstation_prompt> mpirun yada example.exo 500

results in a load balance file,example.nem, containing information on spreading the exodus
file, example.exo, into 500 subdomains.

8 These numbers are guidelines only. No optimization has been run on these platforms. Such would also
be very problem dependent. Note that the amount of memory required is not at all linear with problem size.

UNCLASSIFIED - UNLIMITED RELEASE 349

The load balancing software, yada, is typically executed on a serial machine such as a
workstation. More detailed information on yada is available in the following sections. Some
platforms have both a graphical user interface, yada_gui, and a command line version of
yada, (yada_direct). Each provides identical capability – only the user interface is different.

3.3 Running yada on serial UNIX platforms

On Unix and Linux platforms, yada is run to create a nemesis file, the decomposition,
of the finite element mesh which is stored in an Exodus/Genesis file format.

The input to yada is an Exodus file and the number of processors for which the decom-
position is needed.

mpirun yada example.exo 20

The nemesis file will be written with a .nem extension and the same base file name as the
Exodus file. In the above example, a file named example.nem will be created using this
command line instruction.

The preferred (default) method of running yada uses the decomposition tool named
chaco. Chaco has numerous parameters that can be adjusted to improve the decomposi-
tion, either via the User_Params file or the interface in the source code for yada . The
current defaults should produce a reasonable decomposition, and therefore, for most cases
there will not be a need to change any chaco parameters. However, there is one parameter
in the User_Params file, Check_Input, that is currently set to ’false’ to improve decom-
position speed. This can be changed to ’true’ to help diagnose any problems that might
be encountered while running yada . By default, the User_Params files is created in the
subdirectory where yada is invoked. Yada will not create the file if one already exists.
Therefore, the parameters to yada can be changed via this file, and the next execution of
yada will use these parameters and not overwrite them.

Further information on passing parameters to chaco via the User_Params file can be
found in "The Chaco Users Guide" (Bruce Hendrickson and Robert Leland) SAND95-2344.

3.4 Parallel Machine Work Space

To run Sierra/SD in parallel, work space on the parallel machine is needed. Well designed
parallel machines have specific disks established for fast parallel I/O. Simply choose one, and
make a directory using your username, as follows.

cd /scratch
mkdir $USER

350

After the work space on the parallel machine is set up, move the Sierra/SD input file,
Exodus file, and load balance file (e.g. example.nem) there.

3.5 Using Nem_spread

The load balanced Exodus database must be “spread” to nproc mini-databases. Each
processor reads from its own data file. An example nem_spread input file is, e.g. exam-
ple_spread.inp.

Input FEM file = example.exo
LB file = example.nem
Debug = 4
--

Parallel I/O section
--
Parallel Disk Info = number=1
Parallel file location = root=./, subdir=.

This will spread the data into a subdirectory named “1” below the current working directory.
The subdirectory must already exist.

To facilitate this operation a small script fastspread was created to perform these
operations. It requires that the load balance and input FEM file have the same root name,
and that the data is put into a subdirectory named “1”. It will create that directory if it
does not exist. For the example above, fastspread is run by typing,

fastspread example

This execution of nem_spread will spread nproc Exodus files onto the RAID disks spec-
ified in the input file for nem_spread. This location must also be specified in the FILE
section of the Sierra/SD input file as follows, assuming your load balance file is example.nem
created for 500 processors,

FILE
geometry_file ’./1/example.par’
numraid 1

END

On some platforms nem_spread itself may be a parallel application and may require
mpirun or equivalent to run it. It does not scale well, and should normally not require more
than a few processors.

UNCLASSIFIED - UNLIMITED RELEASE 351

3.6 Sierra/SD FILE Section

As discussed above, if a load balance file example.nem is created for execution of Sierra/SD
for 500 processors, and the number of raids is 1, then the FILE section of the Sierra/SD
input file must look something like the following.

FILE
numraid 1
geometry_file "./1/example.par"

END

3.7 Running Sierra/SD

Once the necessary setup has been done, and a parallel Sierra/SD code exists in your work
space, then the following can be done for example:

cd /scratch/$USER
mpirun -np 500 salinas example.inp

This will run Sierra/SD in parallel on 500 processors using the input file example.inp.9

In practice, only a small number of processors are available interactively on many parallel
platforms. To use a larger number of processors, the queuing system must be used. Help
is available on https://computing.sandia.gov. Because this is quite machine dependent, we
present only a small example (using qsub), and refer the analyst to system information.

To submit a queue submission, create a small shell script, such as the following.

#!/bin/sh
date
cd /scratch/$USER
mpirun -np 500 salinas example.inp
date

The job is submitted using qsub with a command such as the following.

qsub -lT 90:00 -lP 500 -q snl.day -me run_it
9See Table https://computing.sandia.gov for commands appropriate to other platforms.

https://computing.sandia.gov
https://computing.sandia.gov

352

3.8 Joining Result Files

Once the analysis run has been completed, the output exodus files will need to be recombined
into a single file for visualization and processing. epu or Nem_join can accomplish this
process.

The easiest way to use epu is with the -auto flag and specifying the name of the first
output results file.

epu -auto 1/example-out.par.500.0

As an alternative, the Nem_join input file is very similar to the nem_spread input
file. An example input file is, e.g. example_join.inp.

Input FEM file = example.exo
Scalar Results FEM file = example-out.exo
Use Scalar Mesh File = yes
Parallel Results file base name = example-out.par
Number of processors = 500
Debug = 4
--

Parallel I/O section
--
Parallel Disk Info = number=18
Parallel file location = root=/pfs_grande/tmp_,subdir=username

To run nem_join, do the following.

cd /scratch/$USER
nem_join example_join.inp

This will create a file example-out.exo in your current directory by combining all the Exodus
output files located on the RAID disks. This is a standard Exodus file which may be
visualized and processed using serial tools.

UNCLASSIFIED - UNLIMITED RELEASE 353

4 CF FETI

We have found it advantageous to maintain a stable, fixed linear solver, while continuing
solver development with Charbel Farhat originally at the University of Colorado at Boulder
(or CU), and now at Stanford University. However, in many respects the stable version is
some sort of copy of the development code, called “CF” code.

4.1 Features of CF solver

The current CF solver has a number of features that we have not yet merged into the
stable version. This may warrant use of this code for some analysis. The primary features
are listed below.

Complex Solver The templated nature of this code permits solution of both real and
complex systems of equations. This means that the solver may be used for direct
frequency response calculations in parallel.

Contact The solver is designed to understand contact. While we have limited experience to
report at this time, the solver takes the contact information and computes the response
directly. In this sense, it is a nonlinear solver. It is anticipated that this methodology
could permit much more efficient calculation of contact response.

Mortars The solver also directly accepts Tied Surface information (see section 2.19). Again,
internal to the solver, appropriate mortar elements are constructed, and solution is
performed. Use of mortar elements provides a means of consistently computing the
response at an interface. Thus, mismatched meshes should still pass the patch test.
We also hope to be able to better handle the large numbers of constraints that can be
introduced at these surfaces.

4.2 Limitations of the Solver

There are some limitations and restrictions that should be understood in using this solver.

Parameters Some parameters are invalid, and others are added to provide the additional
functionality. See the table below.

Robustness

Constraints Constraints are currently not supported in the complex portion of the solver.
This will soon change. 1-27-04.

Testing While we have tested the solver on our test suite, there is much less available
history at Sandia for the solver. Some testing also occurs at Stanford of course.

354

The following table lists parameters that are added, deleted or modified with respect to
the Sandia FETI-DP solver. For the standard parameters see section 2.4 and table 29.

Table 2: CF FETI Parameter Modifications

Parameter Change Description
rbm_method modify only geometry accepted
outerloop_solver add cg, gmres
corner_aug_rbm_type add translation, all, none
corner_algorithm modify integer
numWaveDirections add integer
crbm_tol add Real number
weighting add Topological, Stiffness
mpc_method add Dual, Primal
mpc_submethod add None, Full, PerFace, PerSub, Diag, BlockDiag
mpc_tol add Real number
pivoting add on, off
mpc_solver add skyline, sparse, spooles
mpc_weighting add topological, stiffness
multibody add 0, 1 or 2

Some of these parameters are described below.

corner_algorithm These are different from the FETI-DP parameters.

1 standard old
3 Three per neighbor
5,6,7,8 use nQ= 1, 2, 3, and 4 respectively, where nQ+2 is # of touching subdomains

numWaveDirections number of wave directions used to construct Q matrix in FETI-DPH.
range 0-13, default = 3.

multibody If equal to “0” use externally defined body parameter passed in CF_Feti con-
structor. For multibody = “1” we force all subdomains to be treated as a single body.
For multibody = “2” then use the FETI_DPC cornerMaker to find bodies. The default
is “0”.
Regarding multibody problems such as contact and tied surfaces, there are three alter-
natives for determining which body each subdomain belongs to. The default "multi-
body 0" is to do the body decomposition on the Sierra/SD side and pass the body id
to the CF_FETI constructor. This is currently not implemented, you are just setting
body = 1 in CF_FetiSolver.C for all cases which obviously won’t work for multibody.
However, by selecting "multibody 2" you can choose to ignore the Sierra/SD body de-
composition and let the our CornerMaker algorithm do it for you. Unfortunately this
algorithm doesn’t always get it right for some odd cases, and although we are working

UNCLASSIFIED - UNLIMITED RELEASE 355

to improve it you will eventually need to implement the body decomposition on your
side because our CornerMaker is CMSoft and will have to be replaced with Kendall’s
CornerMaker which doesn’t do this. The third option is "multibody 1" which forces all
subdomains to be treated as a single body.
As currently implemented, it is necessary for every body to be totally independent
(i.e. not share any nodes or RBMs) with the exception that they can be connected by
MPCs. So to solve a problem with a mechanism you need to split the body containing
the mechanism into 2 or more bodies (creating duplicate nodes as required) and then
re-tie them with MPCs. This could possibly be done as a pre-processing step on the
Sierra/SD side.

This page intentionally left blank.

UNCLASSIFIED - UNLIMITED RELEASE 357

5 GDSW Solver Parameters for Older Version

For completeness and to help avoid potential confusion, Tables 3-4 describe the solver pa-
rameters specific to the older version of the GDSW solver. See §2.6 for remaining parameters
and defaults that are common to both versions of the solver.

krylov_method Two generalized minimum residual (GMRES) methods and one precondi-
tioned conjugate gradient (PCG) method are available. Each method is available with
or without the use of store search directions (see parameters orthog and orthog_option
below). The PCG method is typically faster for well conditioned problems. The right-
preconditioned GMRES method is somewhat more robust with a small additional cost.
We note PCG may not be numerically stable for nonsymmetric or indefinite systems
of equations.

orthog_option Provides additional control over the use of stored search directions. Setting
this to zero eliminates all acceleration using stored search directions.

0 no use of stored search directions
1 not used
2 used for acceleration of PCG
3 used for acceleration of GMRES

One should set orthog_option to 0 if convergence problems are encountered.

scale_option Is used to scale matrix entries prior to factorization. For a diagonal matrix,
the scaled matrix is the identity. This option is only available for the default direct
solver. Setting its value to 1 can also be used as a diagnostic tool to identify the
presence of one or more matrix rows containing all zeros.

coarse_solver Is used to specify the type of direct solver used for the coarse problem. Sim-
ilar direct solver options are available for subdomain interiors (I_solver) and overlap-
ping subdomains (O_solver). The option direct selects the workhorse sparse Cholesky
solver used in the serial version of Sierra-SD, whereas option LDM selects an in-house
sparse solver which can be used for either symmetric or nonsymmetric matrices.

precision_option_coarse Is used to specify the numerical precision used for the coarse
problem direct solver if coarse_solver is set to LDM. Similar options are available for
I_solver andO_solver via the parameters precision_option_I and precision_option_O.
Options available for this parameter are double and single. Use of single rather than
double precision requires less memory, and can lead to improved overall performance.
One should not use single precision for precision_option_I unless SC_option is set to
0. Use of single precision direct solvers in GDSW has not yet been tested thoroughly,
and users are advised to contact sierra-help@sandia.gov with any questions.

358

Table 3: Solver options and defaults specific to older GDSW solver

Variable Values Dflt Description
krylov_method integer pcg 0 - PCG,

or 1 - right preconditioned GMRES, or “gmres”
string 2 - left preconditioned GMRES, or “lgmres”

scale_option 0 0 - no scaling in factorizations
1 - use scaling in factorizations

orthog_option integer 2 (PCG) 0 - do not use PCG acceleration,
2 - use PCG acceleration,

3 (GMRES) 0 - do not use GMRES acceleration,
3 - use GMRES acceleration

preconditioner_type integer 2 1 - BDDC
2 - GDSW
3 - DIAG
4 - NODAL

reduced_option string all coarse space reduction option
all - no reduction (corners + edges + faces)
corners_and_edges - corners & edges only
corners_and_edges_and_bubble - face bubble

RAS_option integer 0 1 - use Restrictive Additive Schwarz
overlap_method integer 0 0 - standard graph-based

1 - element-based, e.g. for nie
LO_option integer 1 0 do not use Local Overlap for subdomains
DS_block_size integer 50 block size used for direct solver
coarse_solver string direct coarse solver: either direct or LDM
I_solver string direct Internal solver: direct or LDM
O_solver string direct Overlap solver direct or LDM
local_solver integer 1 sets both I_solver and O_solver at once
precision_option_coarse integer 0 0-double: double precision for LDM solver
precision_option_I 0 1 - single precision for LDM solver
precision_option_O 0
default_precision_opt integer 0 0 - double

1 - single
(only available for LDM or Pardiso direct solvers)

ML_max_level integer 7 maximum number of levels for multilevel local solver
ML_max_coarse integer 1000 maximum number of unknowns for coarsest level
ML_print_coarse integer 0 0-no/1-yes: print coarse stiffness matrix
ML_print_Phi integer 0 0-no/1-yes: print interpolation matrix
pardiso_message_level integer 0 0-no/1-yes: print messages
prt_matrix integer 0 0 - no output

1 - print out matrix in 3-column format
2 - print out matrix in CSR format

reduced_option_coarse integer 3 same as reduced_option but for subregions
prt_debug integer 0 0-no/1-yes: print debug output

UNCLASSIFIED - UNLIMITED RELEASE 359

Table 4: Solver options and defaults specific to older GDSW Solver

Variable Values Dflt Description
enable_multilevel_coarse_solver N/A N/A Use GDSW to solve coarse problem.
parmetis_option integer 0 parmetis option for coarse problem partitioning:

0 - PartKway
1 - PartGeomKway

coarse_overlap integer 1 overlap parameter for coarse problem
coarsening_ratio integer 0 coarsening ration for coarse problem
num_sub_per_proc integer 1 number of subdomains per processor
num_iter_improve_I integer 0 number of iterative improvement steps for

I_solver = LDM and precision_option_I = single
num_iter_improve_O integer 0 number of iterative improvement steps for

O_solver = LDM and precision_option_I = single
num_iter_improve_coarse integer 0 number of iterative improvement steps for

coarse_solver = LDM and
precision_option_coarse = single

enable_recycle integer 0 0 - do not use alternative recycling algorithm
1 - use alternative recycling algorithm

enable_belos integer 0 0 - do not use Belos
1 - use Belos

belos_num_blocks integer -1 number of search vectors for a Belos cycle
belos_num_recycle integer -1 number of search vectors for recycling

(belos_num_recycle should be less
than belos_num_blocks)

num_recycle integer -1 number of vectors when restarting recycling
(less than max_N_orthog_vecs, set to -1
to not restart recycling)

max_recycle_update integer -1 maximum number of times recycle space is updated

360

reduced_option Is used to specify a reduction strategy for the coarse problem size. There
is no need to consider this parameter for problems run on less than a few hundred
processors. However, as the number of processors (subdomains) becomes large, solving
the coarse problem can become a bottleneck. The default (all) is to do no coarse
problem reduction. Option corners_and_edges eliminates all coarse face degrees of
freedom. The option corners_and_edges_and_bubble is appropriate for problems with
nearly incompressible materials. Reduced coarse problem options have not yet been
tested thoroughly, and users are advised to contact sierra-help@sandia.gov.

enable_multilevel_coarse_solver Tells GDSW to recursively use the same algorithm
for the coarse problem as is used for the original problem. Without this option, the
coarse problem is solved with a direct solver on one processor and can run into mem-
ory limitations for large problems with a lot of subdomains. Use of this option may
adversely affect run time performance, so it is not generally recommended for small to
medium size problems where the direct solver is sufficient.

enable_recycle Is used to activate a new method for reusing (recycling) previously stored
search directions. By default, this new method uses two orthogonalization steps to
help reduce the effects of round off errors.

UNCLASSIFIED - UNLIMITED RELEASE 361

6 Inverse Methods

Inverse methods are actively being developed for Sierra. These methods provide estimates
for material distribution and loads applied to structures. The methods combine test and
analysis results in the time and frequency domains. However, these methods are currently
not ready for release. The following keywords are associated with these methods.

• elmat provides output of element-wise material properties in a material identification
problem.

• topder_source provides output of topological derivatives of source terms.

In the direct frequency response subsection 2.1.7, also see subsubsection 2.1.8 for related
inversion tools.

Index

+/-, 238
- -aprepro, 4
- -define, 4
#include, 331

acceleration, 114, 171
accelX, 139
accelY, 139
accelZ, 139
Acknowledgments, 326
acoustic, 198

point source, 151
acoustic_accel, 19, 21, 23, 147, 151, 152
acoustic_vel, 147, 151, 152
AcousticFraction, 54
adagio, 58
adiag, 127
AEigen, 27
AllStructural, 94
alpha, 242
ANASAZI, 48
Anasazi, 27
anasazi, 38
anblocksize, 28
aneigen_tol, 28
angular_acceleration, 163
angular_velocity, 163, 164
anisotropic, 192, 193
Anisotropy, 332
anmaxiters, 28
annumblocks, 28, 29
annumrestarts, 28
ansolver, 27, 28
anuseprec, 28, 30
anverbosity, 28, 29
apartvel, 124
aprepro, 4, 5
apressure, 124
ARPACK, 25, 87, 123, 326
Attune, 238
autolayer, 263
autospc, 89

badqual_limit, 86, 90
BAR, 273
BB, 23
BEAM, 273
Beam2, 113, 264, 264–268, 271, 272
bending_factor, 250, 258
beta, 242, 244
BFGS, 23
blk_eigen, 30, 245
blkalpha, 187, 189, 190
blkbeta, 187, 189, 190
BLOCK, 3, 185, 191
Block, 185, 251, 299

General Parameters, 186
block, 108, 110, 131, 308
body, 147
BOUNDARY, 144
Boundary, 41, 137, 137, 318
boundary, 150
buckling, 31

case, 8
CBModel, 10, 12, 227, 229, 231
CBR, 10

null space correction, 11
cbr, 307
ceig, 52
Ceigen, 48
ceigen, 38
center node, 178
Centrifugal, 163
Centripetal, 163
CF, 82
CF_FETI, 81, 353, 354
checkout, 9
CheckSMatrix, 39, 40
Cij, 193
Citations, 327
CJdamp, 9, 201
CJetaFunction, 10, 201
CLOP, 100
Clop, 100

362

UNCLASSIFIED - UNLIMITED RELEASE 363

Parameters, 100
CMS, 10
color_domains, 319
Command Line

parallel execution, 347
serial unix, 345

comment
entire section, 4

comments, 3
complex, 37
complex load, 162
Component Mode Synthesis, 10
condition_limit, 86, 89
ConMass, 273, 273–275
ConMassA, 274
consistent loads, 157
consistent mass, 83
constant_vector, 233
constraint_correction, 93
constraintmethod, 83
constraints

orthogonalization, 93
Contact, 171
contact

normal, 176
coordinate, 131, 132, 137, 147, 163, 187, 190,

201, 201, 255
Coordinate Frame

Tied Joint, 181
Coriolis, 163
corner

algorithm - table, 98
algorithms, 97
augmentation - table, 98
parameter - table, 98
selection, 97

corner nodes, 97, 98
corner.data, 318
correction, 11
Craig-Bampton Reduction, 10
Cubit, 315

Damper, 278
viscous, 278

damper, 245, 290

Damping, 41, 242, 242
Block, 188

Dashpot, 278
dashpot, 290
data_truth_table, 20–22, 24
datafile, 226, 227
dataline, 226
ddamout, 128
Dead, 309, 309
dead, 309
Decomposition, 347
delta, 227
density, 199
diagnostics, 315

adiag, 127
beams, 126
cubit, 315
grope, 315
kdiag, 126
yada, 316
zero energy modes, 318

dimension, 170, 226
Direct FRF Example, 342
directfrf, 16, 36, 145, 342
disp, 114
disp0, 139, 140
Displacement, 145
displacement, prescribed, 137
Displacement1, 145
distribution

Tied Joint, 182
dmax, 281
dmax,kmax, 281
dump, 24

E, 192
Eagle, 58
ECHO, 108, 110, 118, 126, 136, 331
Echo, 108, 258
echo, 41, 131
eforce, 108, 121
eig_tol, 87
Eigen

direct solution, 27
eigen, 24, 28, 29, 31, 36, 45

364

eigen tolerance, 87
eigen_norm, 92
Eigenanalysis

element checks, 113
example, 331
quadratic, 51, 54
structural acoustics (modal basis), 51, 54

eigenk, 31
eigenvector

normalization, 92
elastic-plastic, 289
electrostatic, 273
ElemEigChecks, 113
Element

Beam2, 264
ConMass, 273
Dashpot, 278
Dead, 309
eigenvalue checks, 113
Force output, 121
Ftruss, 272
Gap, 290
Gap2D, 293
GasDmp, 296
Hex20, 248
Hex8, 247
HexShell, 260
Hys, 279
InterfaceElement, 309
Joint2G, 283
Property, 284, 288–290

Mass, 273
mortar, 353
Nbeam, 268
Nmount, 296
Nquad, 253
Ntria, 253
OBeam, 272
Offset Shells, 259
orientation, 123
Quad8T, 252
QuadM, 250
QuadT, 249
Rigid
RBar, 300

RBE2, 301
RBE3, 301
RRod, 299

RSpring, 276
Shys, 282
Spring, 275
Spring3, 277
SpringDashpot, 279
Stress/Strain, 311
Superelement, 303
Tet10, 249
Tet4, 249
Tria3, 258
Tria6, 259
TriaShell, 254
Truss, 272
Truth Table, 311
Wedge15, 248
Wedge6, 248

Element Truth Table, 311, 312
Elemqualchecks, 113
elmat, 361
end, 3
energy, 118
energy_exo_var, 91, 157
energy_load, 149, 157
energy_time_step, 90, 157
enforced acceleration, 139

random vib, 171
enforced displacement, 137
engineering units, 87
EOrient, 115
eorient, 123, 260, 313
eplas, 289
equilibrium, 59
error metrics, 119
ErrorNorm

SA_eigen, 54
Euler Force, 163
Example

Anisotropy, 332
Direct FRF, 342
Eigen, 331
Modal FRF, 340
Modal Transient, 338

UNCLASSIFIED - UNLIMITED RELEASE 365

multiple materials, 334
Statics, 344

exo_var, 213–215
exodus, 311

input, 347
results, 347, 352

exodus precision, 128
Exodus Read Functions, 159
explicit, 67
extraNodes.dat, 97

faa, 113
Farhat, Charbel, 326
fastspread, 347, 350
FEI

memory usage, 321
Felippa, Carlos, 326
FETI, 81, 95, 318

CF specific parameters, 354
CF Version, 353
coarse solver, 322
corner nodes, 97, 98
diagnostics, 98
global rigid body modes, 324
local rigid body modes, 323
local solver, 322
multiple right-hand-sides, 323
options affecting memory, 323
orthogonalization vectors, 323
parameters example, 321
preconditioner, 322
Tutorial, 321

FETI-DP, 97
FieldTime, 145
FILE, 66, 112, 134, 347, 350, 351
File, 134
file, 228
FilterRbm, 243
FilterRbmLoad, 70, 91, 94, 167
finite_difference, 233
fixed, 137
flush, 44, 57, 62, 63, 132
fmax, 281
follower, 148, 149
follower stiffness, 150

force, 119
qmodal, 46

force_function_data, 23
force_function_data.txt, 23, 24
forces, 123
format, 228, 233
freq_max, 18, 37, 38, 40, 43, 61
freq_min, 18, 37, 38, 40, 43, 61
freq_step, 18, 37, 38, 40, 41, 43, 61
FREQUENCY, 22
Frequency, 132
frequency, 18, 38, 40–43, 61, 133
FSI function, 222
Ftruss, 272, 273
FUNCTION, 214
function, 41, 44, 139, 152, 159, 171, 203, 203,

227
FSI, 222
linear, 205
loglog, 208
plane wave, 217
polynomial, 207
random, 208
random library, 210
rtc, 215
shock wave, 220
spherical_wave, 218
stepwave, 218
table, 206
user defined, 215

G, 192
Gap, 290, 291, 293, 295

ellipsoidal, 293
Joint2G, 288

gap, 288
gap removal, 172, 173
Gap2D, 293, 293
gap_removal, 75, 76
GasDmp, 296
GasDmp , 296
GDSW, 102

Older Version, 357
Parameters, 102

Gemini, 65, 69

366

Generalized Alpha integrator, 63
GEnergies, 118
geometry_file, 59, 66, 134, 134, 318
global variables, 122
GlobalSolution, 228
Grope, 315

harwellboeing, 119
Hex20, 248
Hex8, 247, 247, 248
Hex8b, 247
Hex8F, 248
Hex8u, 247
HexShell, 260, 261

Mass, 264
History, 130, 229
History Files, 130
Hys, 279, 279, 281
Hysteresis element

cubic, 279

I1, 265
I2, 265
iforce, 163
ignore_gap_inversion, 94
igravity, 163
imaginary_data_file, 20, 22, 24
imoment, 163
impedance_pressure, 142
impedance_shear, 142
include, 5
Inertia Tensor, 10
inertia_matrix, 228
infinite element, 143
Info, 88
INITIAL-CONDITIONS, 168
initial-conditions, 168
initial_time_step, 68
Integrator, 63
InterfaceElement, 309, 309
interp, 213, 215
inverse_load_type, 21
inverse_source_directfrf, 19, 20, 23
Invoking Sierra/SD, 345, 347
ipressure, 163

isotropic, 192, 254
isotropic_viscoelastic, 192
iterations, 237
itraction, 163
Iwan, 282, 286
iwan, 245

Johnson, Conor, 9
joining files, 352
Joint2G, 181, 184, 185, 283, 283, 284, 288,

290

K, 192
kaa, 112
kdiag, 126, 319
keepmodes, 39, 40
kmax, 281
kmin, 281
KNOWN, 21

Lagrange, 83
Largest_Ev, 31
layer, 255
layered material, 255
lfcutoff, 37, 39, 40, 44
linedata_only, 66
LINESAMPLE, 146
linesample, 66, 136, 145
LinkStiffness, 87
load, 8, 41, 44, 168, 168, 170, 171

complex, 162
consistent, 157
randompressure, 159
statics, 158
transient, 158

load balance, 348
LOADS, 20, 23, 166
loads, 8, 31, 41, 44, 139, 140, 146, 146, 150,

158, 168, 171
loglog, 208
LSSTEEPESTDESCENT, 23
lumped, 83, 334
lumped mass, 83
lumped_consistent, 83

maa, 112

UNCLASSIFIED - UNLIMITED RELEASE 367

Macroblock, 191, 191, 283
Martinez, David, 326
mass, 110

blockwise properties, 108
consistent, 83
lumped, 83
non-structural, 189
properties, 108

mass=block, 110
Material, 192

acoustic, 198
anisotropic, 193
Anisotropic example, 332
density, 199
isotropic, 192
layers, 255
orthotropic, 193
stochastic, 194
temperature dependent, 198
temperature function, 198
viscoelastic, 195

Matlab, 145
Matrix

file names, 120
output in mfile format, 120
RanLoads parameter, 170

matrix, 170
Matrix-Function, 222
matrix-function, 41, 170
MatrixFloor, 91
max_newton_iterations, 55–57
MaxMpcEntries, 92
maxRatioFlexibleRbm, 244
MaxResidual, 87
meff, 33
membrane_factor, 258
memory, 97, 321–323

diagnostics, 323
memory.data, 323

memory diagnostics, 318
mesh discretization error, 119
mesh_error, 119
method, 173
Metis, 326
mfile, 119

MFile_Format, 93
MinimumNodalSpacing, 161
mksuper, 304
modal acceleration, 36
modal amplitude, 111
Modal Effective Mass, 33
Modal FRF example, 340
Modal Participation Factor, 33
Modal Transient Example, 338
modal_amp, 120
ModalFilter, 11, 12, 24, 25, 234
ModalFraction, 52
modalfrf, 18, 35, 37, 242, 340
ModalFv, 120
modalranvib, 39, 41, 242
modalshock, 43
modaltrans, 189
modaltransient, 44–47, 69, 79, 242, 338
ModalVars, 111
Model Reduction, 10
mortar, 173
Mortar method, 353
mortar methods, 173
MortarMethod=dual, 173
MortarMethod=standard, 173
MPC, 298, 298
mpc, 110
Mpc_Scale_Factor, 92
MPF, 33

name, 192, 194
nastran

output4 in CBR, 228
Nbeam, 265, 268, 268–271
ncdfout, 228
negative

element matrices, 92
NegEigen, 85
neglect_mass, 144
nem_join, 347, 352
nem_slice, 316, 347, 348
nem_spread, 319, 347, 350
NERSC, 82
netcdf, 228, 306
Newmark-Beta, 63

368

newmark_beta, 64
Ng, Esmond, 82, 326
NLresiduals, 109
NLstatics, 55
NLtransient, 56
nmodes, 11, 24, 25, 28, 30, 31, 37, 39, 40, 43,

44, 50, 60, 234, 242
Nmount, 296, 296

stability, 297
no_geom_stiff, 59
no_symmetrize_struc_acous, 84
node_list_file, 60
NodeListFile, 130, 140, 318
nodes, 108, 131
nodes none mesh, 108
nodeset, 131, 147, 178, 214, 228
nominalt, 224
non-structural mass, 189
none, 108
none nodes, 108
nonlinear, 186, 187, 190
nonlinear_default, 87, 88, 188
Normal

Tied Joint, 181
normal

shells, 176
normalization

eigenvector, 92
normalstiffness, 309
noSVD, 39, 40
NPressure, 124
Nquad, 253, 253
Nquad/Ntria, 253, 255
nquad_eps_max, 253
nrbms, 37
nskip, 43, 44, 57, 61–63, 68, 132
nsm, 187, 189
nsteps, 43, 44, 57, 61, 62
Ntria, 253, 253
nu, 192
null space correction, 11
num_newton_load_steps, 55–57
num_rigid_mode, 94, 167
numraid, 134, 135

OBeam, 113, 272
off, 113
Offset Elements, 310
Offset Shells, 259
old_transient, 62, 237, 240
OldBeam, 85
on, 113
opt_iterations, 20
opt_tolerance, 20
origin, 227
orthogonalization

constraints, 93
orthotropic, 192, 193
orthotropic_layer, 194
orthotropic_prop, 192, 193
OTM, 230
OTME, 230
OutElemMap, 230
OutMap, 230
OUTPUT, 112
output, 18, 38, 89, 130
OUTPUTS, 112–116, 118, 119, 121, 123, 124,

126, 127
Outputs, 111, 229

Slave_Constraint_Info, 125
outputs, 41, 111

P, 137
p0, 140
Padé, 18
parallel, 347
parameter, 85
PARAMETERS, 155, 156, 300

Info, 88
syntax_checking, 89

Parameters, 85
parameters, 103, 104, 167
patch

negative element matrices, 92
Pdot, 139, 140
plane_wave function, 217
plastic, 289
point_volume_accel, 151–153
point_volume_vel, 151–153
power spectral density, 42

UNCLASSIFIED - UNLIMITED RELEASE 369

precision, 128
preddam, 12, 25
prescribed acceleration, 139
prescribed displacement, 137
pressure, 124, 147, 151

depth dependent, 158
nodal, 124

pressure_z, 158
Presto, 135
presto, 58
Problematic Elements, 319
Problematic Subdomains, 319
Processor Count, 347
Projection_eigen, 54
projection_eigen, 48, 49
Property, 284, 288–290
prt_debug, 60, 98, 318, 323
prt_rbm, 99
prt_summary, 99
PSD, 42, 171

QEVP, 47
qevp, 36, 38
qmodalfrf, 36, 54
qmodaltransient, 46, 47, 54, 69, 79
Quad8T, 252, 252, 259
QuadM, 250, 250–252
quadratic eigenvalue

comparison, 47
QuadT, 249, 249–251

Raghaven, Padma, 326
RAID disks, 347, 350
Random Number Generator, 94
randomlib, 213–215
RandomLib functions, 210
RandomPressure, 159
RanLoads, 41, 170, 170
ratiofun, 243
rational function, 18
RBAR, 90, 178, 179, 300, 301
RBar, 300
RBE2, 301
RBE3, 301, 301–303
RBM, 318, 323, 323

RbmDof, 11
RbmTolerance, 91
read_from_file, 59
ReadNodal, 153
readnodal, 213, 214
ReadNodal functions, 213
ReadNodalSet, 214
ReadNodalSet functions, 214
ReadSurface, 153, 214, 215
ReadSurface functions, 214
real_data_file, 20, 22, 24
Receive_Sierra_Data, 58
receive_time_step, 59
REFC, 302
References, 327
reorder_rbar, 90
reorthogonalization, 38
residual, 121

global var, 122
non-linear norm, 109
vector, 109, 121

residual work, 121
Restart

solution support, 79
restart, 76
Rho, 64
rho, 57, 62–64
rhs, 121
Rigid Body Filter, 167
RigidSet, 180
rigidset, 178, 178

limitations, 178
rigidsets, 178
RMS, 39, 118
Rod see Truss, 272
ROLmethod, 20, 22
RotaccelX, 139
RotaccelY, 139
RotaccelZ, 139
rotate, 255
Rotational Frames, 163
rotational_type, 188
RotX, 137
RotY, 137
RotZ, 137

370

rowfirst, 227
RROD, 299, 299
RrodSet, 179, 180
RSpring, 113, 275, 276, 276
RTC, 272
rtcfile, 216
Run time compiler, 215, 272
Running

parallel, 347
serial, 345

S_isotropic, 192, 194
SA_eigen, 48, 51

ErrorNorm, 54
limitations, 52

sa_eigen, 38, 49
SamplingRandom functions, 209
scalar, 215
scale, 152, 158
scaling

loads, 158
PSD, 171

scattering, 83
sd_factor, 247, 248, 250, 251
Section Commands

Loads Rigid Body Filter, 167
Block, 185
Block Parameters, 186
Boundary, 137
Contact Data, 171
Coordinate, 201
Damping, 242
Echo, 108
FETI, 95
File, 134
Frequency, 132
Function, 203
History, 130
Initial-Conditions, 168
Load, 168
Loads, 146
Macroblock, 191
Material, 192
Matrix-Function, 222
ModalFilter, 234

Outputs, 111
Parameters, 85
RanLoads, 170
RrodSet, 179
Sensitivity, 236
Solution, 6
Table, 226
Tied Surfaces, 172

SENSITIVITY, 231, 236, 240
Sensitivity Analysis, 236, 331
sensitivity_method, 231
sensitivity_param, 307, 308
set

rigid, 178
Shear

Tied Joint, 182
shear_axis, 181, 284
Shells

Offset, 259
shift, 11, 24, 26–32, 44, 60
shock_wave function, 220
Shys, 282, 282
shys, 288
sideset, 131, 147, 148, 178, 215, 228, 260
sierra, 135
Sierra data, 58
Sierra Transfer, 65
sierra_input_file, 134, 135
size, 226
SkipMpcTouch, 89
Slave_Constraint_Info, 125
slosh, 143
Smallwood, D. O., 287
smoothing parameters, 174
SOLUTION, 20, 26, 29, 32, 56, 59, 83, 334
Solution, 3, 6, 76

Buckling, 31
CBR, 10
ceigen, 50
checkout, 9
CJdamp, 9
complex eigen, 50
direct frequency response, 16
Eigen, 24
Eigen of stiffness, 31

UNCLASSIFIED - UNLIMITED RELEASE 371

Eigen of subdomain, 60
Inverse Source Identification, 19
linear transient dynamics, 62
matrix output, 24
modal frequency response, 35
modal random vibration, 39
modal transient response, 44
Multicase, 6
Parameter Table, 8
Parameters, 6

Multicase Time Stepping, 9
nonlinear statics, 55
nonlinear transient dynamics, 56
Options, 76
constraint method, 83
lumped mass, 83
no_symmetrize_struc_acous, 84
restart, 76
scattering, 83
solver, 80

qmodal frequency response, 54
qmodal transient response, 46
Receive_Sierra_Data, 58
shock response spectra from modes, 43
shock response spectra from transients,

61
statics, 59
Table of Arguments, 7
tangent stiffness matrix update, 60
thermal structural response preload, 65

solution, 6, 39, 41
solver, 80

parameters, 100, 102
Sparsepak, 82
sparspak, 82
SpatialBC functions, 212
SPATIALLY_CONSTANT, 21
SPATIALLY_VARIABLE, 21
Specific Heat, 199
SPHERE, 274
spherical_wave, 218
spherical_wave function, 218
spreading files, 347, 350
Spring, 113, 275, 275, 276

cubic, 277

Linear, 275
Parameter Values, 276
Rotational, 276

Spring3, 113, 277, 277
SpringDashpot, 279, 279
SR1, 23
srs_damp, 43, 61
Stanford, 353
start_time, 44, 57, 62
static, 154
statics, 59, 344
Statics Example, 344
step size, 62
step_wave function, 218
strain, 115
Stress

Gauss Point, 116
stress, 115, 116
Stress = GP, 116
Stress/Strain Recovery, 311
Structural Acoustics

eigen, 51, 54
StructuralFraction, 52
subdomain

output, 111
subdomain_eigen, 60
subdomains, 136
sum, 113
Superelement, 303, 303

parameters, 307
superelement, 231, 304, 307
SuperLU, 82, 326
surface

Tied Joint, 182
syntax_checking, 89

Table, 224, 226, 226
table, 206
tablename, 207
tangent, 6, 60, 165
tangentialstiffness, 309
TangentMethod, 88
tcoord, 260, 261
termination_time, 67, 68
Tet10, 249, 249

372

Tet4, 249, 249
thermal_exo_var, 91, 155, 157
thermal_load, 90, 149, 153, 154, 156, 157
thermal_time_step, 90, 156, 157
TIED DATA, 75, 76, 172, 173, 182
Tied Joint

Coordinate Frame, 181
tied node, 178
Tied Surfaces, 172
Time Integrator, 63
time step, 62
time_step, 43, 44, 57, 61, 62
time_step_estimation, 68
time_step_increase_factor, 68
time_step_scale_factor, 68
TIndex, 122
tolerance, 55–57, 237
topder_source, 361
traction, 148
transfer, 62, 65, 84
Transform, 83
transhock, 61
transient, 47, 57, 62, 79, 154
TRANSVERSE, 172, 174
Tria3, 249, 252, 254, 258, 258, 259
Tria6, 252, 259, 259
TriaShell, 249, 252, 254, 254, 255, 258, 313
Troubleshooting, 315
troubleshooting

cubit, 315
grope, 315
yada, 316
zero energy modes, 318

TRSTEEPESTDESCENT, 23
TruncationMethod, 39, 40
TRUSS, 274
Truss, 113, 272, 272
tsr_preload, 65, 66

units of measure, 85, 87
Univ. Colo, 353
Univ. Colo, 326
Univ. Minn, 326
untilfreq, 24, 25
update_step_interval, 68

update_tangent, 55–57, 291
UseAnalystNodeMap, 94
usemodalaccel, 37, 54
User functions, 215

values, 237
vector, 215
vectors, 237
vectors none, 237
vel, 215
vel0, 139, 140
velocity, 114
velx, 215
vely, 215
velz, 215
viscofreq, 50
viscous damper, 278
volume_acceleration, 213
VonMises, 116
vrms, 41, 118

warninglevel, 127
waterline, 71
Wedge15, 248
Wedge6, 248, 248
work, 118
WtMass, 85, 108
wtmass, 171

X, 137

Y, 137
yada, 316, 319, 347–349
yes, 144

Z, 137
ZEM, 97, 318

UNCLASSIFIED - UNLIMITED RELEASE 373

DISTRIBUTION:

1 MS 0380 Garth M.Reese, 01542
1 MS 0380 Timothy F.Walsh, 01542
1 MS 0380 Manoj K.Bhardwaj, 01542
1 MS 0899 Technical Library, 9536 (electronic copy)

This page intentionally left blank.

v1.38

	Introduction
	Sections of a Sierra/SD Input File
	SOLUTION
	Multicase
	A Note On Time Stepping In Multicase Solutions
	Checkout
	CJdamp
	Craig-Bampton Reduction
	Dynamic Design Analysis Method (DDAM)
	Directfrf
	inverse_source_directfrf
	Dump
	Eigen
	Direct Eigen Solution
	AEigen
	Blk_eigen
	Eigenk
	Largest_Ev
	Buckling
	Modal Participation Factor
	Modalfrf
	Modalranvib
	Modalshock
	Modaltransient
	QModaltransient
	QEVP
	QModalfrf
	NLStatics
	NLTransient
	Receive_Sierra_Data
	Statics
	Subdomain_Eigen
	Tangent
	Transhock
	Transient
	TSR_Preload
	Explicit Solver
	Geometric Rigid Body Modes
	Waterline of Rigid Body
	Gap Removal

	Solution Options
	Restart – option
	Solver
	Lumped – option
	Constraintmethod – option
	Scattering – option
	no_symmetrize_struc_acous – option
	transfer – option

	PARAMETERS
	FETI
	Corner Algorithms
	Solves within Solves
	Levels of Diagnostic Output

	CLOP
	GDSW
	ECHO
	Mass Properties
	Mpc
	ModalVars
	Subdomains

	OUTPUTS
	Maa
	Kaa
	Faa
	ElemEigChecks
	Elemqualchecks
	Displacement
	Velocity
	Acceleration
	Strain
	Stress
	VonMises
	Stress = GP
	VRMS
	Energy
	GEnergies
	Mesh_Error
	Harwellboeing
	Mfile
	Force
	rhs
	EForce
	Residuals
	Resid_only
	TIndex
	EOrient
	Pressure
	NPressure
	APressure
	APartVel
	Slave_Constraint_Info
	Statistics
	KDiag
	ADiag
	Warninglevel
	Precision
	ddamout

	HISTORY
	FREQUENCY
	FILE
	geometry_file
	sierra_input_file
	Additional Comments About Output

	Linesample
	BOUNDARY
	Prescribed Displacements and Pressures
	Prescribed Accelerations
	Node_List_File
	Nonreflecting Boundaries
	Impedance Boundary Conditions
	Slosh Boundary Conditions
	Infinite Elements

	LOADS
	Scale Factors for the Load
	Sideset Loading
	Spatial Variation
	Required Section
	Follower Stiffness
	Acoustic Loads
	Thermal Loads
	Energy Deposition Input and Loads
	Consistent Loads
	Pressure_Z
	Static Loads
	Time Varying Loads
	Random Pressure Loads
	Frequency Dependent Loads
	Rotational Frames
	Rigid Body Filter for Input

	Load
	INITIAL-CONDITIONS
	RanLoads
	Contact Data
	Tied Surfaces
	Mortar Methods
	Node to Face

	Contact Normals
	RigidSet
	RrodSet
	Tied-Joint
	Input Specification
	Output Specifications

	BLOCK
	Block Parameters
	General Block Parameters

	Macroblock
	MATERIAL
	Isotropic Material
	Anisotropic Material
	Orthotropic Material
	Stochastic Material
	Linear Viscoelastic Material
	Acoustic Material
	Temperature-Dependent Material Properties
	Density
	Specific Heat
	CJetaFunction

	COORDINATE
	FUNCTION
	Linear Functions
	Functions using Tables
	Polynomial Functions
	LogLog Functions
	Random Functions
	SamplingRandom Functions
	RandomLib Functions
	SpatialBC Functions
	ReadNodal Functions
	ReadNodalSet Functions
	ReadSurface Functions
	User Defined Functions
	Plane Wave
	Planar Step Wave
	Spherically Spreading Wave
	Shock Wave
	FSI

	MATRIX-FUNCTION
	Alternate Table Interface

	Table
	CBModel
	Sensitivity Analysis for Craig-Bampton models

	ModalFilter
	Integer List
	SENSITIVITY
	Attune
	Sensitivity Output
	Sensitivity Limitations

	Element Level Interface for UQ
	DAMPING
	Nonlinear transient solutions with damping
	Nonlinear Distributed Damping

	Elements
	Hex8
	Hex20
	Wedge6
	Wedge15
	Tet4
	Tet10
	QuadT
	QuadM
	Quad8T
	Nquad/Ntria
	TriaShell
	Layered Shell
	Tria3
	Tria6
	Offset Shells
	HexShell
	Beam2
	Nbeam
	OBeam
	Truss
	Ftruss
	ConMass
	Spring
	Spring Parameter Values

	RSpring
	Spring3 - nonlinear cubic spring
	Dashpot
	SpringDashpot
	Hys
	Shys
	Iwan
	Joint2G
	Specification
	Constitutive Behavior

	Gap
	Gap2D
	GasDmp
	Nmount
	MPC
	RROD
	RBar
	RBE2
	RBE3
	Superelement
	Interface Elements
	Dead
	Offset Elements and Lumped Mass

	Stress/Strain Recovery
	Stress/Strain Truth Table
	Solid Element Stress/Strain
	Shell Element Stress/Strain
	Line Element Stress/Strain

	Troubleshooting
	Stand-Alone Tools
	Grope
	Cubit

	Using Yada to identify disconnected regions
	Using Sierra/SD To Troubleshoot
	Modal Analysis
	Evaluating Memory Use
	Debugging RBMs with the Node_List_File
	Identifying Problematic Subdomains
	Problematic Elements and Connectivity

	Troubleshooting FETI Issues
	Introduction
	Standard FETI Block
	Memory
	Local Rigid Body Modes
	Global Rigid Body Modes

	Acknowledgments
	References
	Sierra/SD Example Input Files
	An Eigenanalysis Input File
	An Anisotropic Material Input File
	A Multi-material Input File
	A Modaltransient Input File
	A Modalfrf Input File
	A Directfrf Input File
	A Statics Input File

	Running Sierra/SD on serial UNIX platforms
	Running Sierra/SD in Parallel
	Number of Processors Needed
	Use ``yada'' to load balance the model
	Running yada on serial UNIX platforms
	Parallel Machine Work Space
	Using Nem_spread
	Sierra/SD FILE Section
	Running Sierra/SD
	Joining Result Files

	CF FETI
	Features of CF solver
	Limitations of the Solver

	GDSW Solver Parameters for Older Version
	Inverse Methods
	Index

